rectangular screening machines | sepor, inc

rectangular screening machines | sepor, inc

SEPOR has the Multi-Vib rectangular inclined circular throw vibrating screening machines to adequately meet many demanding process screening requirements. These rectangular screen decks accomplish size classification of ores, chemicals and other materials by vertical sizing. All screen decks are curved horizontally, perpendicular to the material flow, and deck panels are parallel. The result from these multi deck units is product classification to exact specifications. For a 5 (W) by 7 (L) 5 deck screen unit, 175 square feet of screen area is available for classifying material. Only 60 square feet of floor space is required for a Multi-Vib screen deck.

The designed are of the screen decks hold back particles momentarily, then accelerates them on the downside. Since most screening is accomplished in the first few feet of a screen deck, this design optimizes screen efficiency and capacity. Screen panels are available in high carbon or stainless steel.

Sepor, Inc. began business in 1953 with the introduction of the Sepor Microsplitter , a Jones-type Riffle splitter, developed by geologist Oreste Ernie Alessio for his own use in the lab. Sepor grew over the next several decades to offer a complete line of mineral analysis tools, as well as pilot plant equipment for scaled operations.

vibrating screen working principle

vibrating screen working principle

When the smaller rock has to be classified a vibrating screen will be used.The simplest Vibrating Screen Working Principle can be explained using the single deck screen and put it onto an inclined frame. The frame is mounted on springs. The vibration is generated from an unbalanced flywheel. A very erratic motion is developed when this wheel is rotated. You will find these simple screens in smaller operations and rock quarries where sizing isnt as critical. As the performance of this type of screen isnt good enough to meet the requirements of most mining operations two variations of this screen have been developed.

In the majority of cases, the types of screen decks that you will be operating will be either the horizontal screen or the inclined vibrating screen. The names of these screens do not reflect the angle that the screens are on, they reflect the direction of the motion that is creating the vibration.

An eccentric shaft is used in the inclined vibrating screen. There is an advantage of using this method of vibration generation over the unbalanced flywheel method first mentioned. The vibration of an unbalanced flywheel is very violent. This causes mechanical failure and structural damage to occur. The four-bearing system greatly reduces this problem. Why these screens are vibrated is to ensure that the ore comes into contact will the screen. By vibrating the screen the rock will be bounced around on top of it. This means, that by the time that the rock has traveled the length of the screen, it will have had the opportunity of hitting the screen mesh at just the right angle to be able to penetrate through it. If the rock is small enough it will be removed from the circuit. The large rock will, of course, be taken to the next stage in the process. Depending upon the tonnage and the size of the feed, there may be two sets of screens for each machine.

The reason for using two decks is to increase the surface area that the ore has to come into contact with. The top deck will have bigger holes in the grid of the screen. The size of the ore that it will be removed will be larger than that on the bottom. Only the small rock that is able to pass through the bottom screen will be removed from the circuit. In most cases the large rock that was on top of each screen will be mixed back together again.

The main cause of mechanical failure in screen decks is vibration. Even the frame, body, and bearings are affected by this. The larger the screen the bigger the effect. The vibration will crystallize the molecular structure of the metal causing what is known as METAL FATIGUE to develop. The first sign that an operator has indicated that the fatigue in the body of the screen deck is almost at a critical stage in its development are the hairline cracks that will appear around the vibrations point of origin. The bearings on the bigger screens have to be watched closer than most as they tend to fail suddenly. This is due to the vibration as well.

In plant design, it is usual to install a screen ahead of the secondary crusher to bypass any ore which has already been crushed small enough, and so to relieve it of unnecessary work. Very close screening is not required and some sort of moving bar or ring grizzly can well be used, but the modern method is to employ for the purpose a heavy-duty vibrating screen of the Hummer type which has no external moving parts to wear out ; the vibrator is totally enclosed and the only part subjected to wear is the surface of the screen.

The Hummer Screen, illustrated in Fig. 6, is the machine usually employed for the work, being designed for heavy and rough duty. It consists of a fixed frame, set on the slope, across which is tightly stretched a woven-wire screen composed of large diameter wires, or rods, of a special, hard-wearing alloy. A metal strip, bent over to the required angle, is fitted along the length of each side of the screen so that it can be secured to the frame at the correct tension by means of spring-loaded hook bolts. A vibrating mechanism attached to the middle of the screen imparts rapid vibrations of small amplitude to its surface, making the ore, which enters at the top, pass down it in an even mobile stream. The spring-loaded bolts, which can be seen in section in Fig. 7, movewith a hinge action, allowing unrestricted movement of the entire screening surface without transmitting the vibrations to the frame.

One, two, or three vibrators, depending on the length of the screen, are mounted across the frame and are connected through their armatures with a steel strip securely fixed down the middle of the screen. The powerful Type 50 Vibrator, used for heavy work, is shown in Fig. 7. The movement of the armature is directly controlled by the solenoid coil, which is connected by an external cable with a supply of 15-cycle single-phase alternating current ; this produces the alternating field in the coil that causes the up-and-down movement of the armature at the rate of thirty vibrations per second. At the end of every return stroke it hits a striking block and imparts to the screen a jerk which throws the larger pieces of ore to the top of the bed and gives the fine particles a better chance of passing through the meshes during the rest of the cycle. The motion can be regulated by spiral springs controlled by a handwheel, thus enabling the intensity of the vibrations to be adjusted within close limits. No lubrication is required either for the vibrating mechanism or for any other part of the screen, and the 15-cycle alternating current is usually supplied by a special motor-generator set placed somewhere where dust cannot reach it.

The Type 70 Screen is usually made 4 ft. wide and from 5 to 10 ft. in length. For the rough work described above it can be relied upon to give a capacity of 4 to 5 tons per square foot when screening to about in. and set at a slope of 25 to 30 degrees to the horizontal. The Type 50 Vibrator requires about 2 h.p. for its operation.

The determination of screen capacity is a very complex subject. There is a lot of theory on the subject that has been developed over many years of the manufacture of screens and much study of the results of their use. However, it is still necessary to test the results of a new installation to be reasonably certain of the screen capacity.

A general rule of thumb for good screening is that: The bed depth of material at the discharge end of a screen should never be over four times the size opening in the screen surface for material weighing 100 pounds per cubic foot or three times for material weighing 50 pounds per cubic foot. The feed end depth can be greater, particularly if the feed contains a large percentage of fines. Other interrelated factors are:

Vibration is produced on inclined screens by circular motion in a plane perpendicular to the screen with one-eighth to -in. amplitude at 700-1000 cycles per minute. The vibration lifts the material producing stratification. And with the screen on an incline, the material will cascade down the slope, introducing the probability that the particles will either pass through the screen openings or over their surface.

Screen capacity is dependent on the type, available area, and cleanliness of the screen and screenability of the aggregate. Belowis a general guide for determining screen capacity. The values may be used for dried aggregate where blinding (plugged screen openings), moisture build-up or other screening problems will not be encountered. In this table it is assumed that approximately 25% of the screen load is retained, for example, if the capacity of a screen is 100 tons/hr (tph) the approximate load on the screen would be 133 tph.

It is possible to not have enough material on a screen for it to be effective. For very small feed rates, the efficiency of a screen increases with increasing tonnage on the screen. The bed of oversize material on top of the marginal particlesstratification prevents them from bouncing around excessively, increases their number of attempts to get through the screen, and helps push them through. However, beyond an optimum point increasing tonnage on the screen causes a rather rapid decrease in the efficiency of the screen to serve its purpose.

Two common methods for calculating screen efficiency depend on whether the desired product is overs or throughs from the screen deck. If the oversize is considered to be the product, the screen operation should remove as much as possible of the undersize material. In that case, screen performance is based on the efficiency of undersize removal. When the throughs are considered to be the product, the operation should recover as much of the undersize material as possible. In that case, screen performance is based on the efficiency of undersize recovery.

These efficiency determinations necessitate taking a sample of the feed to the screen deck and one of the material that passes over the deck, that is, does not pass through it. These samples are subjected to sieve analysis tests to find the gradation of the materials. The results of these tests lead to the efficiencies. The equations for the screen efficiencies are as follows:

In both cases the amount of undersize material, which is included in the material that goes over the screen is relatively small. In Case 1 the undersize going over the screen is 19 10 = 9 tph, whereas in Case 2 the undersize going over is 55 50 = 5 tph. That would suggest that the efficiency of the screen in removing undersize material is nearly the same. However, it is the proportion of undersize material that is in the material going over the screen, that is, not passed through the screen, that determines the efficiency of the screen.

In the first cases the product is the oversize material fed to the screen and passed over it. And screen efficiency is based on how well the undersize material is removed from the overs. In other cases the undersize material fed to the screen, that is, the throughs, is considered the product. And the efficiency is dependent on how much of the undersize material is recovered in the throughs. This screen efficiency is determined by the Equation B above.An example using the case 1 situation for the throughs as the product gives a new case to consider for screen efficiency.

Generally, manufacturers of screening units of one, two, or three decks specify the many dimensions that may be of concern to the user, including the total headroom required for screen angles of 10-25 from the horizontal. Very few manufacturers show in their screen specifications the capacity to expect in tph per square foot of screen area. If they do indicate capacities for different screen openings, the bases are that the feed be granular free-flowing material with a unit weight of 100 lb/cu ft. Also the screen cloth will have 50% or more open area, 25% of total feed passing over the deck, 40% is half size, and screen efficiency is 90%. And all of those stipulations are for a one-deck unit with the deck at an 18 to 20 slope.

As was discussed with screen efficiencies, there will be some overs on the first passes that will contain undersize material but will not go through the screen. This material will continue recirculating until it passes through the screen. This is called the circulating load. By definition, circulating load equals the total feed to the crusher system with screens minus the new feed to the crusher. It is stated as a percentage of the new feed to the crusher. The equation for circulating load percentage is:

To help understand this determination and the equation use, take the example of 200 tph original or new material to the crusher. Assume 100% screen efficiency and 30% oversize in the crusher input. For the successive cycles of the circulating load:

The values for the circulating load percentages can be tabulated for various typical screen efficiencies and percents of oversize in the crusher product from one to 99%. This will expedite the determination for the circulating load in a closed Circuit crusher and screening system.

Among the key factors that have to be taken into account in determining the screen area required is the deck correction. A top deck should have a capacity as determined by trial and testing of the product output, but the capacity of each succeeding lower deck will be reduced by 10% because of the lower amount of oversize for stratification on the following decks. For example, the third deck would be 80% as effective as the top deck. Wash water or spray will increase the effectiveness of the screens with openings of less than 1 in. in size. In fact, a deck with water spray on 3/16 in. openings will be more than three times as effective as the same size without the water spray.

For efficient wet or dry screeningHi-capacity, 2-bearing design. Flywheel weights counterbalance eccentric shaft giving a true-circle motion to screen. Spring suspensions carry the weight. Bearings support only weight of shaft. Screen is free to float and follow positive screening motion without power-consuming friction losses. Saves up to 50% HP over4- bearing types. Sizes 1 x 2 to 6 x 14, single or double deck types, suspended or floor mounted units.Also Revolving (Trommel) Screens. For sizing, desliming or scrubbing. Sizes from 30 x 60 to 120.

TheVibrating Screen has rapidly come to the front as a leader in the sizing and dewatering of mining and industrial products. Its almost unlimited uses vary from the screening for size of crusher products to the accurate sizing of medicinal pellets. The Vibrating Screen is also used for wet sizing by operating the screen on an uphill slope, the lower end being under the surface of the liquid.

The main feature of the Vibrating Screen is the patented mechanism. In operation, the screen shaft rotates on two eccentrically mounted bearings, and this eccentric motion is transmitted into the screen body, causing a true circular throw motion, the radius of which is equivalent to the radius of eccentricity on the eccentric portion of the shaft. The simplicity of this construction allows the screen to be manufactured with a light weight but sturdy mechanism which is low in initial cost, low in maintenance and power costs, and yet has a high, positive capacity.

The Vibrating Screen is available in single and multiple deck units for floor mounting or suspension. The side panels are equipped with flanges containing precision punched bolt holes so that an additional deck may be added in the future by merely bolting the new deck either on the top or the bottom of the original deck. The advantage of this feature is that added capacity is gained without purchasing a separate mechanism, since the mechanisms originally furnished are designed for this feature. A positivemethod of maintaining proper screen tension is employed, the method depending on the wire diameter involved. Screen cloths are mounted on rubber covered camber bars, slightly arched for even distribution.

Standard screens are furnished with suspension rod or cable assemblies, or floor mounting brackets. Initial covering of standard steel screen cloth is included for separations down to 20 mesh. Suspension frame, fine mesh wire, and dust enclosure are furnished at a slight additional cost. Motor driven units include totally-enclosed, ball-bearing motors. The Vibrating Screen can be driven from either side. The driven sheave is included on units furnished without the drive.

The following table shows the many sizes available. Standard screens listed below are available in single and double deck units. The triple and quadruple deck units consist of double deck units with an additional deck or decks flanged to the original deck. Please consult our experienced staff of screening engineers for additional information and recommendations on your screening problems.

An extremely simple, positive method of imparting uniform vibration to the screen body. Using only two bearings and with no dead weight supported by them, the shaft is in effect floating on the two heavy-duty bearings.

The unit consists of the freely suspended screen body and a shaft assembly carried by the screen body. Near each end of the shaft, an eccentric portion is turned. The shaft is counterbalanced, by weighted fly-wheels, against the weight of the screen and loads that may be superimposed on it. When the shaft rotates, eccentric motion is transmitted from the eccentric portions, through the two bearings, to the screen frame.

The patented design of Dillon Vibrating Screens requires just two bearings instead of the four used in ordinary mechanical screens, resulting in simplicity of construction which cuts power cost in half for any screening job; reduces operating and maintenance costs.

With this simplified, lighter weight construction all power is put to useful work thus, the screen can operate at higher speeds when desired, giving greater screening capacity at lower power cost. The sting of the positive, high speed vibration eliminates blinding of screen openings.

The sketches below demonstrate the four standard methods of fastening a screen cloth to the Dillon Screen. The choice of method is generally dependent on screen wire diameters. It is recommended that the following guide be followed:

Before Separation can take place we need to get the fine particles to the bottom of the pile next to the screen deck openings and the coarse particles to the top. Without this phenomenon, we would have all the big particles blocking the openings with the fines resting atop of them and never going through.

We need to state that 100% efficiency, that is, putting every undersize particle through and every oversize particle over, is impossible. If you put 95% of the undersize pieces through we in the screen business call that commercially perfect.

dewatering screen | vibrating screen

dewatering screen | vibrating screen

Since our inception, we are instrumental in offering a premium quality array of Rectangular Screen. Offered rectangular screen is meticulously checked under the direction of our quality experts against different quality parameters, to provide defect free assortment to our customers. Our practiced professionals design this rectangular screen with the use of ultra modern technology and quality approved components. Additionally, this rectangular screen is widely demanded in market.

We Aesha Conveyors And Crushing Equipments is a Proprietorship Firm and renowned as a leading manufacturer of the finest quality Industrial Conveyors, Sand Processing Plants, Bucket Elevators, Industrial Mixers, Industrial Crushers, Industrial Mills, Material Handling System, Silica Sand Processing, Industrial Valve, Industrial Dryers, Foundry Equipments, Industrial Screen, etc.

linear vibrating screen - fr engimech private limited

linear vibrating screen - fr engimech private limited

FR Engimech Private Limited provide all type of Linear screens are square or rectangular in shape and provide high accuracy in screening. The linear vibrating screen can be run through the gear motor or through the vibro motor, the gears motor connects directly to the eccentric shaft and the vibro motor is mounted on the body of the vibrating screen. The vibrating screen wire mesh can be made of MS, spring steel or stainless steel according to the customers requirement. Our vibrating screens have up to 04 decks capable of accurate screening materials. Here are the detailed features and specifications of the linear vibrating screen.

Linear screen (linear vibration screen) uses vibration motor as vibration source to make material thrown up on the screen and move forward in a straight line. Material evenly enters the inlet and outlet of the screen from the feeder.

FR Engimech Private Limited provide all type of Linear screens are square or rectangular in shape and provide high accuracy in screening. The linear vibrating screen can be run through the gear motor or through the vibro motor, the gears motor connects directly to the eccentric shaft and the vibro motor is mounted on the body of the vibrating screen. The vibrating screen wire mesh can be made of MS, spring steel or stainless steel according to the customers requirement. Our vibrating screens have up to 04 decks capable of accurate screening materials. Here are the detailed features and specifications of the linear vibrating screen.

The utility model has the advantages of low energy consumption, high output, simple structure, easy maintenance, fully enclosed structure, no dust overflow and automatic discharge, and is more suitable for pipeline operation.

used vibrating screen for sale. fabo equipment & more | machinio

used vibrating screen for sale. fabo equipment & more | machinio

Rotary motion of the motor change into the horizontal, vertial and inclined sports through the installation of the ends of the weight on the vibration motor, and then transfer the motion to the surface of the scr...

The linear vibrating screen is driven by double vibrating motor, when two vibrating motors do synchronous and reverse rotation, the excitation force generated by its eccentric block. In the direction parallel to ...

DZG series high frequency vibrating screen features of high frequency, low amplitude and low noise, it's ideal for screening & filtering of powder, granule, pulp or slurry material in food, pharmaceutical, chemic...

ZSG high efficiency mining vibrating screen is designed for high level screening of granular and powdered material, it's a common screening equipment that frequently used at blast furnace discharge, coking plant ...

Henan Sand Gravel Vibration Vibro Screen Manufacturer Industrial Screens Sieve Shaker Machine Industrial Screens (Sieve Shaker Machine) isofmultilayerandhighefficiency.Theeccentricshaftvibrationexciter...

1.We are factory and be able to give you the lowest price than market one; 2.Our products have been exported to over 80 countries and widely used in global mining and construction industry; 3.we have a prof...

Product Description Sediment dry screening unit dewatering vibrating screen be customized Brief introduction Base on lower water content sand is well needed and sold in market, we do research and manufacture a se...

Tumbler screen, which uses a operating principle of slow acceleration and a longer residence time on the mesh surface area, is ideal for multi-stage separation of fines, lightweights and difficult to screen mater...

the classification of grinder | eversun,sieving machine

the classification of grinder | eversun,sieving machine

The pulverizeris a machine that pulverizes large size solid raw materials to the required size.The crusher is composed of coarse crusher, fine crusher, wind conveying device and so on. The purpose of the crusher is achieved in the form of high speed impact.Mainly used in mining, building materials and other industries.

There are four kinds of external forces exerted on the solid in the process of crushing: compression rolling, shear, impact, rolling and grinding.Compression rolling is mainly used in coarse and medium crushing, suitable for the crushing of hard materials and large materials.Shearing is mainly used in coarse crushing (crushing) and crushing operations, suitable for toughness or fiber materials and large pieces of crushing or crushing operations;Impact is mainly used in crushing operations, suitable for crushing brittle materials.Rollingis mainly used in high fineness grinding (ultrafine grinding) operations, suitable for most of the properties of materials for ultrafine grinding operations.Grinding is mainly used for ultrafine grinding or super large grinding equipment, suitable for further grinding operations after grinding operations.

Coarse crusher is mainly used for crushing pretreatment operations in various industries. Its role is mainly to process materials with larger diameter (5-10cm) to granular materials with smaller diameter (5-10mm in diameter).

The pulverizeris mainly used for medium fineness pulverization in various industries. Its function is to process the granular materials to the medium fineness powder with the required diameter for subsequent treatment or as finished products.

Ultrafine crusher is mainly used for ultrafine crushing operation in most industries. It is to crush the materials after crushing operation again to reach the required material diameter. It is mainly used for raw materials processing of high-end products.

What is the operation process of the vacuum feeder? The vacuum feeder has produced many conveniences in various fields,It is a kind of mechanical equipment that can handle some very difficult feeding. In order to prevent the operator from touching the materials, reduce environmental pollution, [...]

Knowledge of Screen Mesh for Sieving machine The sieving of materials is controlled by the screen mesh size on the sieving machine, so the selection of screen mesh is the main factor to improve the efficiency of the vibrating sieving machine. (Ultrasonic Screen Mesh) A. Conversion of [...]

What equipment is ideal for screening solder powder The EVERSUN vibratory separatory is the ideal machine for grading solder powder.Solder powder is the key component to solder paste, representing nearly 90% of its mass. The quality of the powder has a significant impact on the [...]

What type of conveying system is used to convey resin particles without dust The structure of resin particles mainly affects the role of additives. For example, PVC particles can be divided into loose and compact structures. The loose type is also called the cotton ball [...]

The determinants of the price of vacuum feeder The vacuum feederhas the advantages of good sealing effect, high conveying efficiency, and small space occupation. It is widely used in the conveying of powder and granular materials and is deeply loved by users. However, for those [...]

What to do if powder coating blinding the screen With the development of society, powder coatings are used more and more widely, because powder coatings are environmentally friendly, pollution-free, and efficient in use. However, in actual production, many manufacturers are also troubled by impurities or [...]

Get in Touch with Mechanic
Related Products
Recent Posts
  1. chile large sandstone chute feeder for sale

  2. environmental mineral pendulum feeder in nguni

  3. low price medium river pebble linear vibrating screen sell in nigeria

  4. shale shaker screen for chemicals

  5. high frequency screen grabber

  6. small calcium carbonate circular vibrating screen in constanţa

  7. screen vibrator for sale

  8. gold screen price new zealand

  9. low price small basalt circular vibrating screen manufacturer in lautoka

  10. busan efficient large sandstone pendulum feeder

  11. briquetting press in electrode plant

  12. gold mining and processing

  13. efficient large sandstone sand washer price in zimbabwe

  14. ball mill big sie grinding media distribution

  15. mining equipment 4 less

  16. slag crushing plant manufacture in usa clinker grinding mill

  17. liner cement grinding

  18. crusher equipment design book free

  19. rotary xa14

  20. copper milling machine price small scale