primary - definition of primary by the free dictionary

primary - definition of primary by the free dictionary

All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.

what is a portable rock crusher plant? - hongxing machinery

what is a portable rock crusher plant? - hongxing machinery

Hongxing Machinery(which also calls HXJQ Machine) portable rock crusher is a kind of rock crushing equipment, being of integrated design, powerful crushing force,compact structure, low energy consumption, and reliable structure. It is divided into tire-type mobile jaw crusher, mobile cone crusher, mobile impact rock crusher, the crawler type mobile jaw crusher, etc.

Besides that, it also has a wide range of adaptation, especially for the treatment of construction waste. However, up to now, the problem of construction waste in the city is still severe, which not only affects the environment but also causes a serious impact on human health simultaneously. This has brought a good opportunity for the development of the Hongxing Machinery mobile stone crusher.

There are many types of mobile crushers for sale in Hongxing Machinery, such as portable jaw crusher, portable cone crusher, portable impact crusher, etc. They are regarded as the host core crushing equipment, so it is particularly suitable applied to crush soft or medium hard materials and extra-hard materialsandhard rock, such as taconite, granite, gold mine, ore, corundum, quartzite, etc. The ship-form structure of mobile stone crusher can lower the chassis, reduce the weight and volume of the plant, and make it easy for turning and transportation.

Accompanying the rapid advancement of industrialization and urbanization in the 21st century, a large amount of construction waste was emerging during the urban construction process in China. According to incomplete statistics, the annual construction waste generated by a single new rural construction is approximately 300 million cubic meters. Including with the urban program of construction waste, the amount of construction waste generated in one year will attain about 1 billion cubic meters. It is estimated that by 2020, construction waste will reach 3.6 billion tons, and in 2030, it will be up to 7.3 billion tons.

As we all know, Chinese industries mainly adopt the two ways by traditional dumping and underground landfill disposal. During the stacking and landfilling process, construction waste seriously contaminates the surrounding surface water and groundwater. In the long-term stacking process, harmful substances in construction waste can also cause serious pollution to the soil.

Construction waste piled up in the open air is more prone to causing dust and harmful gas, causing serious pollution to the air. Therefore, it is crucial to transform the way in which resource-based construction waste is dealt with.

In the past two decades, in the field of crushing, mobile stone crushers have been widely used in foreign countries. At the beginning of this century, the portable rock crusher plant technology was introduced to China HXJQ Machine. Since the localization is prevailing, the design level and manufacturing technology have been rapidly improved, and domestic customers are also increasingly rising.

Comparable to the China Hongxing fixed crushers, the mobile crusher plant usually includes two types: such as the tire-type mobile rock crusher and the crawler type portable rock crusher. In comparison, the series of mobile rock crushers are not only easy to move but also more usable and flexible. Whats more, with a complete category of crushing and screening equipment, the operation process is more smooth, and the process is more advanced.

Wheel-type mobile cone crusher has a high base plate. Whether it is using for site, transporting or for moving, it always needs the semi-trailer for traction. And the small turning radius makes it easier to drive on the flat places flexibly and does not damage the road surface. In a word, wheel-type portable cone crusher is mostly used in flat quarry or construction site.

The crawler-type portable rock cone crusher has high strength and low ground bearing pressure, which also has good trafficability and adaptability to the mountain area, so it is often used for climbing mining or crushing.

The practice has proved that adopting the portable crusher plant can improve the recycle utilization rate of construction waste a lot, and facilitate the rate of renewable utilization. It is a both efficient and environmentally friendly processing method for the construction waste processing industry.

Generally speaking, HXJQ Machinery portable rock crushing plants are mainly used for metallurgical, chemical, building materials, hydropower and other processing materials that often need to be relocated, especially for the production of mobile stones such as highways, railways, hydropower projects, and the treatment of urban construction waste. Customers can adopt a variety of configuration forms according to the type of processing raw materials, size and the requirement of finished materials.

According to relevant experts, in the past, Chinas portable crushing technology relied mainly on developed technology of foreign countries but without excessive innovation. Nowadays, many crusher manufacturers (like Hongxing Machinery)are constantly carrying out innovation and paying more attention to the innovation of equipment. Up to now, Hongxing Machinery has made great breakthroughs in crushing technology. The mobile crusher machine produced by HXJQ China has abandoned the problems of high energy consumption, high cost and serious pollution compared to traditional crushers. In addition, the mobile crusher plant has exhibited an extraordinary breakthrough in the energy-saving, environmental protection, whose quality has facilitated greatly.

To fully implement the development of the construction waste industry. Solving the crucial problems in three aspects is Hongxing Machinerys priority: first, the implementation of the transportation, consumption, and regeneration of the construction waste treatment industry needs to achieve; second, the technological innovation of regenerative facilities on construction waste, involving research and development work; the third is to encourage the participation of social groups to complete the overall work more conveniently and efficiently. No matter which aspect of the eagle, the future prospect of mobile crusher plant waste crushers are considerable. The future development of the Hongxing Machinery will also leap towards faster and more sustainable.

portable rock crushers

portable rock crushers

As it relates to portable crushers, the basic portability concept under investigation here might better be described by the phrase decentralized crushing to allow automated ore haulage. Clearly this means more and smaller crushers exhibiting some degree of mobility, and automated ore haulage usually means belt conveyors. The trade-off is a necessarily more costly crushing system against a more efficient and productive ore handling system. From the crusher manufacturers point of view the challenge is to achieve small size and portability without sacrificing too much in the important areas of feed opening, throughput, system availability, and capital and operation costs.

Portable in Portable Rock Crushers simply means that the crusher is moved periodically in order to be close to production, thus minimizing costly haulage of run of mine material. Within this simplified definition however, portability has quite different meanings in mines of widely varying ore bodies and mining plans. We shall further assume that a portable crusher is one that can be moved through standard mine passageways with minimal dismantling, and can be set up with little or no site excavation.

Underground is obvious, and when taken with portable brings to mind such terms as low, narrow, horizontal, light, serviceable, and mobile. This study may define a machine that is also applicable to some above ground installations but no attempt will be made to enhance such applicability at the expense of underground performance.

Hard-rock is sometimes taken to mean non-coal, but this broad definition would include many weaker mineral mines not in need of the fundamentally new equipment that is the subject of this study. Many of these non-coal mines have, however, developed highly efficient and mechanized coal-like mining methods that would be applicable to hard-rock mines if suitable equipment (crushers) were available. We have therefore gained valuable information by studying these mines, but the intended beneficiary of this investigation is the underground hard-rock industry, defined as those mines that cannot economically make use of presently available portable underground crushers.

To begin, let us attempt to define approximate requirements in order to establish a background for further specification of performance parameters, and to form the basis for a critical examination of existing crusher designs. In fact, it seems clear that no single optimum set of parameters can ever be sharply defined. However, with adequate documentation and an appreciation of likely individual case variations, such an approximate set of parameters can serve as the basis for new concept generation and further development work.

Before defining what a portable rock crusher is, we need to know how it will be used. Fortunately for the purposes of this study, portable underground crusher applications may be divided into two rather distinct categories, and one of these, though worthy of further thoughts and development, does not require fundamentally new hardware development. The distinction, perhaps predictably, is primarily one of physical machine size, although, to a lesser degree, distinctions can also be made in the desired degree of portability within a given size category.

The first category, which we shall dismiss for the moment, is one in which machine size, per se, is not limiting. Applications in this category are high head-room room and pillar mines, such as large limestone mines having 35 foot backs , and, in the future, oil shale mines having even higher backs. While significant portability improvements can be made in assembly methods and general layout, as discussed in Section 9, this category of applications ran in general be satisfied by existing manufacturers through modification of essentially standard machine components.

The second category is that in which machine size is very much a limiting factorso much so that todays standard hard rock primaries are simply not applicable. The two general mine types falling in this category include, obviously, low head room room and pillar mines and, perhaps not so obviously, most mines with vertically oriented ore bodies. The latter include caving mines, whatever the caving mechanism (block caving, sub-level caving, etc.), and other generally vertical mine plans such as open stope, shrinkage stoping, cut and fill, etc. . For purposes of this study, these mines are collectively characterized by gravity delivery of ore to a stationary or nearly stationary, draw point or chute from which the ore is handled (and often rehandled) by a variety of means in both the horizontal and vertical directions. Even though massive ore bodies may be involved, typical drift dimensions in such mines are not large, on the order of 8 to 12 feet high by not much greater widths.

Both mine types in this category of small applications suggest maximum installed crusher sizes of 7 to 9 feet high, 8-10 feet wide, and any reasonable length (the latter determined by transport conditions rather than installed dimensions. It is important to note that this height includes whatever overhead feed components (and dump space) may be required by vertical feed crushersthus standard top fed jaw crushers, which would normally be selected for hard rock, are much too tall.

Portable crushers will receive run of mine material from the face regardless of the mining method or the primary haulage system used, and then crush this ore and feed it into a more continuous and efficient ore haulage system. Within these applications it appears that for a decentralised crusher arrangement a throughput of 100 to 800 tons per hour will suffice. Although there is no clear-cut limit, this throughput is obviously a function of the size of the mining unit it services, and the ability, within the stated drift dimensions, of the primary haulage system to deliver material to the crusher. Thus it is not surprising that a limited range of throughputs will serve a wide variety of mining operations.

Just like the very large central crusher located (probably) at the shaft, the proposed decentralised portable crusher system must handle ROM (run of mine) ore. This fact, when taken with the low headroom restrictions, will continually challenge the would be portable crusher designer.

A study by the U. S. Bureau of Mines in five underground mines, utilising five different mining methods, in extremely different types of rocks, showed a striking similarity of over-size ore, not only in mean size but in shape as well. Table I presents these results. The indicated size uniformity is considered misleading, particularly in view of the fact that the study did not attempt to

determine the percentage of ore exceeding the stated oversize. The shape trend of this data (3:2:1) is more interesting, indicating a condition somewhere between block and slabby. Larger variations in size of oversize are supported by another study which was concerned with block caving mines. Results of this study, also presented in Table I, characterize the block cave mine of the preceding study as having fine ore. There is clearly no single optimum crusher feed opening for these, let alone all, block caving mines, although it is probably safe to say that block caving permits the least control of fragment size and can thus be expected to present highly variable conditions.

Mining plans relying on drilling and blasting for fragmentation control will, no doubt, show greater uniformity in size of oversize, but great variations are to be expected in the size distribution of ROM ore from mine to mine. Assuming a successful crusher can avoid direct attack of the three-to-five font major fragment dimension indicated in Table I, and assuming some form of control over occasional abnormal oversize, it is likely that minimum or critical feed openings in the 30-36 inch range will satisfy a very large percentage of mines.

To establish approximate product size, let us assume that the product is to be belt conveyed. In most cases this will be true, and it is expected that maximum economic benefit will occur in this combination. The feeder-breaker, so successfully used on coal mine section belts, is generally set to produce nine inch maximum lumps for 36 inch belts. For first-cost and other reasons, this belt width appears to be very common for section and feeder applications, and for the denser-than-coal ores found in the hard rock industry, a maximum product size in the range of 6-8 inches is appropriate, it is interesting to note that even for very large oil shale installations (very wide belts) a six inch product is recommended.

It appears that there is relatively little need to simultaneously develop a range of machinery between these small units and the large central primaries now being used. Ultimately a range of intermediate sizes will be desirable, of course, but this can easily be developed from low head room equipment meeting the above specifications.

As will be illustrated in the following section, these requirements cannot be met by existing hard rock crushing equipment. In fact, noting that the desired dimensions include whatever overhead clearance is needed to load the crusher proper, and space underneath to deliver its product (assuming a typical vertical jaw or gyratory design), it is obvious that standard machines are far from satisfactory. It follows, then, that satisfactory new concepts cannot be found among minor variations of standard concepts: the sought after design will differ substantially from present designs. At the same time, it would be comforting if a new concept did not depart substantially from the basic comminution means of proven designs. Economical crushing of hard rock, day in and day out, through many millions of tons, is, after all, a rather difficult task, even without severe space limitations, and proven means should not be so quickly discarded.

The inventors task is not quite so formidable as the proceeding may suggest. In comparison to a typical aggregate production application for example, some aspects of the portable application actually ease the design problems: The crusher is needed only for oversize (unbeltable) material. Thus, while the crusher should avoid fines, it has no rigid product size requirement other than maximum size, and essentially no product shape requirement (a requirement that justifies some rather subtle variations of crusher geometry in many conventional applications). Furthermore, if the crusher is designed to pass undersize material freely, or if its feed mechanism provides scalping to bypass smaller material, much of the throughput will be free, a provision which will also reduce the production of fines, and, more importantly, dust.

Many manufacturers were contacted in an extensive effort to include all available equipment and manufacturing capability in this study. Appendix A is a list containing the names and (if available) addresses of those manufacturers who were contacted. Although not all were responsive, many were quite helpful and the majority expresses the opinion that they would need the results of this study if the industry or any single manufacturer were to consider the development of portable, underground, hardrock crushers.

This study was neither intended, nor will it attempt, to instruct the reader in the complete art of primary rock crushing. There are many good references in this area; notable among these is McGrew. Our goal is to define the optimum parameters for the design of a portable, underground, hard rock crusher in order to insure that future development will lead to maximum utilization by the industry.

In summary then, we want to study present crusher types with an eye toward moving them around in hard-rock mines. Though small, these units will handle essentially as mined or ROM material, and should rightfully be called primary crushers.

This class of crusher historically has been used on the strongest ores. Crushing is accomplished by relatively slow moving members exerting very high force levels. Understandably, these crushers are typically very big, very strong, and heavy.

Figure 1 shows a simplified section of a typical gravity fed gyratory crusher. Clearly the typical portable underground crusher requirements presented in Section 2 cannot be met by a standard gyratory. However, because the crushing action of the gyratory works well on hard rock, the portable crusher designer should be aware of the favorable features exhibited by this important member of the primary field:

Single and double toggle jaw crushers differ in the motion characteristics of the moving jaw, which results in somewhat different operating characteristics. Jaw action in the Blake (double toggle) type is a simple pivoting motion about a stationary bearing near the receiving opening. Displacement is thus a maximum at the discharge, tapering to zero at the pivot.

Because of its simplicity, the overhead eccentric (single toggle type) exhibits lighter weight, much lower cost, and a greater potential for portability, although it is not significantly shorter thanthe Blake (double toggle type). Due to the pronounced vertical components of motion from the overhead eccentric, it elliptical wiping motion provides good feeding action, and hence capacity. The price for this action is, of course, accelerated wear of the jaw plates in addition to increased shock loading on the eccentric and shaft bearings caused by the large jaw motion relative to Blake type machines at the receiving opening. Consequently, Blake types, with their low scrubbing motion and great leverage on larger feed, tend to be favoured for highly abrasive or very hard, tough rock.

The basic overhead eccentric jaw motion has been built in a vertical double-eccentric version (both jaws moving in unison), with the intention of providing more capacity for a given feed opening and longer jaw life due to reduced scrubbing provided by lower relative jaw velocity. The Eimco Division of Knvirotech, and the Westfalia Company of Germany, have tipped this arrangement on edge (eccentrics vertical), thereby changing the feed direction from vertical to horizontal and greatly reducing machine height.

Little is known about the German machines, as none are in use in North America and none are believed to be handling predominately hard rock. Eimco, on the other hand, has built two prototypes which have been tested in medium and hard rock in low headroom conditions. The Eimco crusher, shown in Figure 4, utilizes a feeder-breaker style chain flite conveyor which pulls material from the bottom of the surge pile and stuffs it into the jaw region. Discharge occurs immediately after the choke region of the jaws, onto a customer supplied conveying means. The chain conveyor obviously must pass beneath the active region between the jaws, severely diminishing or eliminating its feeding ability, particularly during the crushing stroke. To achieve better feeding in the crushing zone, Eimco has modified the common overhead eccentric toggle geometry so that both jaws close every where at the same time, with the crushing stroke strongly oriented in the feed direction. These measures enable a second generation machine to achieve throughputs approaching (perhaps 80%) the capacity of a vertical, single overhead eccentric crusher of comparable inlet dimensions. The Eimco inlet is approximately 40 x 40 inches.

Both prototypes were tested at White Pine Copper in White Pine, Michigan. Problems were encountered and changes were made, as with most prototypes, but large blocks of 20-28,000 psi sandstone were successfully handled on a regular basis. Since Dial time, mining

at White Pine has been concentrated in medium strength shale, where the horizontal jaw is not sufficiently perfected to be competitive with heavy duty feeder-breakers, about which more is presented in subsequent sections. Very strong ores have not been tried on a significant scale in the horizontal jaw.

Though low in profile, this crusher design utilizes a feed means that tends to orient slabby material horizontally, hence the wide, square jaw opening. Slabs that do get fed on edge can be passed untouched through the jaws, a common problem with vertically fed jaw crushers as well. Dimensionally, horizontal jaw crushers are quite acceptable, though they could use elevating discharge means to reduce site excavation requirements, and with more development in hard rock applications, this concept may become an economical alternative candidate for the subject application.

True impact crushers for primary crushing are limited to hammer types. They are included here only because there may be a specialized situation justifying their unique characteristics. Figure 5 shows a section of a typical hammermill; Figure 6 shows an Impactor.

Impact type crushers are high reduction machines (up to 40:1 vs. 8:1 for a jaw). In part because of this, they produce a considerably finer product than is necessary to achieve mechanized underground haulage. Very large feed, as is common with ROM material, is not easily handled by the hammer mill because of its impact principle of operation. Crushing is accomplished by the high velocity impact (5000 fpm) between the hammers (and liners) and individual pieces of rock in the feed, with the only means of support of rock fragments being the inertia of the rock itself. Under these conditions the rock fragments should not only be less massive than the hammer, but also quite friable. Abrasive feeds cannot be economically handled by hammermills or by impactors.

Impactors, as Figure 6 indicates, are better suited to large feeds than is the hammermill. This type uses fewer and stouter hammers, but, like the hammermill, relies on the inertia of the feed to hold the rock while it is chipped away. Primary crushing, even of non-abrasive and friable material, and particularly underground, is better handled by other machines unless very special conditions exist. An admittedly unlikely example of a situation in which an impact type crusher could be successfully employed as a portable underground primary crusher might be described by thefollowing conditions:

(a) abnormally small ROM material suitable for impactor feed but too big to be conveyed. (b) very friable, non-abrasive feed, material. (c) fine product allows less expensive form of mechanized haulage and eliminates the need for secondary crushing equipment.

Roll crushers is a term sometimes used to describe the combination (impact & pressure) class of crushers. Sledging roll crushers is a more suitable name, since it is distinguishing from the impact and pressure terminology and, in fact, the rotor in a roll crusher is frequently called a sledging roll. Sledging roll crushers are characterized by a medium velocity impact (500 fpm or less) between a rotor protrusion and the feed material while the feed is supported in the crusher, hence the term sledging.

The term roll is used in a wide variety of non-sledging equipment types and needs clarification here. Crushing rolls, two-roll feed-pinching machines, are really a high speed continuous pressure class of crusher used for secondary and tertiary crushing. Sometimes they are confusingly called two-roll crushers, or double roll crushers, or four-roll crushers. The roll surfaces are usually smooth or nearly so and impact or even sledging does not play a significant part in the comminution process. Roll crusher may also be used to describe a high speed machine in which the feed is neither supported by the crusher nor nipped by the roll protrusions. As described in the previous section, this is a high reduction pure impact class crusher sometimes used to avoid secondary crushing.

Sledging roll crushers may be of the single- or double-roll type, the latter being distinguishable from smooth pressure class crushing rolls by the characteristic protrusions (sledges) which work on the feed material. Double-roll sledging crushers usually employ more impact and less sledging by virtue of higher tip speeds, and are principally used for secondary crushing. Figure 7 shows a typical single-roll sledging crusher. There are several features of this type of crusher worthy of mention.

The feeder-breaker is an adaptation of the single roll-sledging crusher developed specifically for portability and use in low headroom coal mines. Since it has found successful use in a number of non-coal mines it is therefore worthy of mention. Figure 8 shows a typical feeder breaker.

To achieve low profile, this specialized machine passes material horizontally under the roll, or breaker shaft as it is usually called. The anvil (or bed in this configuration) is flat, and feed is accomplished by a chain-flite conveyor which pulls feed from under the pile of material in the attached surge hopper, and, after passing through the breaking zone, continues on to feed at a relatively controlled rate over the conveyor head pulley, hence the name feeder-breaker. Another characteristic of this single-roll sledging crusher is the shape of the breaker teeth, or picks, as they are generally called. They are relatively few in number (particularly for weak material), replaceable, and pointed, generally being carbide tipped.

Feeder breakers have greatly advanced the practice of conveyorized haulage in coal mines, and during recent years beefed-up versions, pioneered by the W. R. Stamler Corporation, have been successfully employed in a variety of non-coal mines. Among these are underground salt, potash, trona, iron, copper mines, and some open pit mines. These mines use a wide variety of primary short haulage means, but they all make use of low labor, high capacity conveyor systems made possible by the feeder-breaker.

When applied to stronger and/or more abrasive ores, feeder breaker crushing costs naturally escalate to levels well above those of conventional hard rock (i. e., jaw) crushers. In fact it appears that feeder-breakers are used, in some applications, solely because of their low headroom characteristics, and despite crushing costs from 3 to 5 times what could be expected of a jaw crusher in the same material. However, sufficient savings are achieved elsewhere in the haulage system, so that feeder-breakers are the economic choice in one copper mine where the ore is routinely between 12-20,000 psi compressive strength, and also abrasive. That mine also uses feeder-breakers in sandstone sections where ore strength runs to 28,000 psi. Maintenance and rebuild costs are higher in such areas, and this is considered by many to be about the hard rock limit of feeder breakers as a class of crusher.

A narrow version of the feeder-breaker has been developed by a German company for use on longwall systems. Various sledge configurations (not sharp picks) are used, and the unit is generally incorporated in a chain-flite bridge conveyor between the longwall system and a headgate conveyor. Two such units are in use on longwalls in U.S. trona mines (7000 psi max.), which accounts in part for their mention here. The concept (sizing of longwall discharge) is worth noting, in view of U.S. research efforts to apply new technology and longwall methods to hard rock mines.

There are many other comminution processes that one could bring to mind. Among these would be all the primary and secondary breakage methods, grinding and milling methods, thermomechanical, and even ballistic and nuclear concepts. These are not considered here because there are no presently available machines using these processes. Other comminution methods in general will be considered in the concepts section (Section 9) after the problem statement has been fully developed and conclusions drawn.

Having discussed the various classes and types of hard rock primary crushers, we can examine their potential for meeting the general requirements previewed in Section 2. Those requirements call for a crusher of low height, large feed opening, and modest throughput. Since multiple small crushers will be less efficient to operate and more costly to purchase than one central crusher, we must also consider cost as a factor in suitability.

The one mining parameter that is least controllable in a given mine and has the greatest influence on crusher selection is size of feed. Although drift dimensions obviously cannot be specified by the crusher designer, machine height, to some extent, is in his hands. Accordingly, machine height, throughput, and cost will be examined with respect to the common parameter, feed opening. Since feed opening implies a two dimensional passageway for material, the smaller or Critical Input Dimension (CID) will be used where appropriate. The implication is that most any crusher can (and should) be fed so as to avoid direct attack of the largest dimension of the feed material. Also implied, but perhaps less obvious, is the desire and intention to feed material so as to attack the smallest dimension of the feed, not the middle dimension.

Figure 9 presents representative manufacturers throughput data as a function of CID for 3 classes of crushers totalling six different types. Capacities have been normalized on medium limestone and minus 6 inch product in most cases. Gyratories are clearly high capacity machines at any feed size, and they tend to he applied to very large material. The Blake type jaw crushers are considerably lower in capacity, reflecting to some extent their application to very hard and abrasive feeds. Also noticeable is the range of capacities available for a given CID, a favorable feature afforded by variable jaw or rotor width. The tremendous forces encountered in crushing very large feed tend to leave the stronger Blake as the only jaw type in this region.

Getting down into the throughputs of most concern (400 tph and less), both Blake and overhead eccentric types appear, with the edge in capacity going to the overhead eccentrics. Also appearing are the horizontal jaw crushers and the sledging class, both single roll and feeder-breaker types. Maximum feed size for a given CID will be somewhat less in the case of horizontal jaws because the feed mechanism for this type tends to cause attack of the middle, rather than the smallest dimension of the feed material.

Figure 10 is a plot of bare machine height as a function of CIB for the same six types of crushers. Keeping in mind that bare height is exclusive of any foundations if required) or feeding and discharge means, all conventional gyratory and vertical jaw types are clearly beyond our need for 7-9 foot installed height at 30-36 inch CID. Nor can these standard machines be significantly shortened, as an examination of earlier figures will reveal.

We are left, at present, with horizontal jaws and the sledging class of crusher. But sledging roll crushers and to a lesser extent, feeder breakers, reach their economic limit at medium strength ore, characterized by (among other things) compressive strengths

in the 12-20,000 psi range and, even then, only under specialized conditions. The horizontal jaw crusher would appear to be the lone contestant, but it is relatively new and little can be learned about its economic performance at this time. Westfalia, a German manufacturer of longwall and other mining equipment, developed the concept, and, although machines are in use in Europe, no information is available regarding hard or very strong ore applications, and none are in service in North America. Eimco Division of Envirotech is the U.S. pioneer of horizontal jaw crushers, having built two generations of machines. These machines were technically successful in crushing a regular diet of stronger ore (20-28,000 psi) but could not compete economically in the medium strength range against the then highly developed heavy duty feeder-breakers, a statement which most certainly would apply to weaker ores as well. Dimensionally, the horizontal jaw is virtually identical to the successful feeder-breaker (Eimco data is plotted) and with further experience this basic concept may prove to he one answer to low profile hard-rock crushing.

Figure 11 shows the bare cost (no drives, hoppers, feeders, etc. ) of the various crushers under discussion. Some of the data are approximations, but the plot is useful in several respects. It shows, for instance, that something must be sacrificed to get low profile. In the case of horizontal jaws, increased initial cost is the penalty. Feeder-breakers, the low profile member of the sledging class, cannot economically handle the stronger ores. To work on the very hard or abrasive ores, machine height aside, requires that one choose the more expensive Blake type vertical jaw instead of the lighter overhead eccentric. Gyratories having the required CID again are inherently much too much machine for this application.

Using the larger Blake type or gyratories as an example (they dominate as centralized crushers in hard-rock mines) we can get an idea of the capital investment against which a multiplicity of portable crushers must inevitably be judged. Suppose a 7000 tpd mine would need a 4860 Blake type jaw crushing 500 tph of minus 6 inch product. Such a crusher would cost perhaps $350,000 including significant installation costs. An equivalent portable crusher system might involve five machines, four of which would be in service, with each capable of 250 tph. The greater total crushing capacity of the portable system is necessitated by its need to keep moving up, and by its vulnerability to downstream haulage interruptions. If these five portables cost in the vicinity of $200,000

each (a reasonable assumption for hard rock), the capital investment for portables becomes one million dollars versus $350,000 for a fixed installation. In addition, since the operating and maintenance costs of the two crusher systems are likely to be in about the same ratio, it is clear that the portable system must achieve great savings in other categories. These would likely include primary and secondary haulage costs (capital and labor) find productivity.

The primary use of a portable crusher, i.e., a crusher mounted on crawlers or tires, in the rock and mining industries is to reduce costs by permitting the substitution of conveyor belt haulage for truck or track haulage. The usual sequence of operations in surface mining is drilling, blasting, loading, haulage, and crushing. Haulage is normally accomplished by truck or track-mounted cars, the latter method being used for the longer distances.

In addition to potential cost savings in haulage procedures, a portable crusher would allow better utilization and performance of shovels. Loading operations would not be interrupted as often by the necessity of waiting for cars or trucks. Unfortunately, the application of belts in open pits for haulage from bench sites is generally not practical under existing conditions because a belt fed directly by a mechanical shovel can be torn, damaged, or worn out quickly by the large rock fragments falling on it during loading.

As previously noted, the use of a portable crusher would increase the performance of a loading shovel and thereby decrease the number of shovels required to maintain the same rate of production. However, there are quarries where rock must be taken from different parts of the pit and mixed together in order to get a desirable composition. This is usually done in cement quarries. For such cases, storage of material at the end of the stationary conveyor or along its route is suggested, where the desirable mixture of product could be achieved.

Quarries or open pits using track haulage often require a large number of workers to move the track after blasting as well as to operate the railroad switches. The use of a long-boom shovel would make it possible to increase the distance between the bench face and the track. It would also aid in reducing the amount of time now consumed in moving the track and the number of workers to do the job, but such a shovel is more expensive and slower.

Application of the portable crusher might encourage the use of higher benches with the commensurate less blasting that would be required. Domestic practice, however, does not favor the use of high bench faces, partly for safety reasons during loading and partly because higher benches usually require a large borehole diam, larger drill, etc. Inclined drilling might solve such blasting problems because it reduces the resistance of the rock to blasting at the toe of the bench.

mobile rock crusher for quarrying & mining - jxsc machine

mobile rock crusher for quarrying & mining - jxsc machine

Feeding size: <800mm Capacity: 100-300T/H Types of mobile crusher: wheel type mobile crusher and crawler type mobile crusher Main equipment: a highly customizable combination of feeder, rock crusher, vibrating screen, conveyor, etc. Applications: aggregate, quarrying, mining, construction waste recycling, etc.

A complete mobile breaking production line is classically equipped with mobile jaw crusher and mobile impact crusher to achieve coarse and fine crushing operations such as stone and construction waste. It took only a few days to set up the entire production line without pile driving, which was nearly thirty days faster than the fixed crushing production line.

The mobile crusher is mainly used for metallurgy, chemical industry, building materials, highways, railways, and other materials that often need to be moved and processed, such as construction waste, river pebbles, granite, basalt, limestone, quartz stone and other materials. Customers can produce materials according to the processing scale. , Product quality and other requirements, select the most suitable configuration. How to recycle construction waste with a mobile crusher? A complete set of construction waste disposal production line is composed of mobile jaw crusher, impact crusher, vibrating screen, sand washing machine, etc., which can sort and crush construction waste and obtain a variety of high-quality sand and gravel aggregates with different specifications, widely used in roads, buildings and other fields to achieve recycling of construction waste.

Mobile crusher equipment is divided into two categories: tire type and crawler type according to the bearing method. In addition, each different type of crusher can also be freely assembled according to customer needs, mainly including jaw tire mobile crushing station, impact tire mobile crushing station, cone tire mobile crusher, impact tire mobile crushing station, heavy hammer type The combination of tire mobile crushing station and crawler mobile crushing station is simple and convenient. It can effectively realize the integration of the unit and the diversity of configuration. The scope of application is more extensive and flexible. 1. The mobile crusher can be moved to the operation site to start the operation quickly, saving the construction planning time. 2. The compact structure reduces the area occupied, and is especially suitable for the small crushing site. 3. The modularized and automated operation design of the mobile crusher reduces labor costs. 4. The intelligent PLC automatic monitoring system can predict the failure of machine equipment, effectively avoiding the occurrence of major accidents.

mobile impact crushers | rubble master

mobile impact crushers | rubble master

Mobile impact crushers are used to recycle concrete and asphalt and process natural rock. They are easy to move on and between job-sites, which allows operators to crush on smaller job-sites. Best of all they often come with an on-board screen attachment to produce spec products eliminating the need for additional screening equipment on-site.

Machine configuration can be adjusted to produce a multitude of finished products. The aggregate quality is far superior than with other type crushers because of its gradation and cuboid material shape.

RUBBLE MASTER has been the market leader for mobile Compact Crushers in the USA and Canada for 20 years. RUBBLE MASTER mobile crushers deliver the best performance in their class without sacrificing mobility. Manoeuvrability, transportability, easy & safe to operate thats our main focus!

RUBBLE MASTER mobile impact crushers use a proven and powerful diesel-electric drivetrain. Contrary to many traditional crusher manufacturers RUBBLE MASTER has been using this highly efficient drivetrain since our beginning in 1991 because of its many benefits over the lifetime of a machine.

mobile crusher - eastman rock crusher

mobile crusher - eastman rock crusher

Mobile crusher is often referred to as mobile crushing plant, is a wheel or crawler rock crushing plant that innovatively designed for unfixed production sites, it easily movable in a varieties of rock crusher applications like aggregate production, construction waste recycling, quarrying, mining industry.The greatest advantage of mobile crushers is the flexibility, both tracked and wheeled versions, greatly shoot the trouble of hauling and thus maximise productivity reduces the operation costs.

In fact, the concept of mobile and semi-mobile crushing plants has arouse for a long time, but it has not been realized until recent years, mainly because most machines are very heavy, it is not easy to move them. Therefore, most crushers are permanent facilities and rarely relocated. Now, the mobile crusher can replace the stationary crushing system.

If youre looking for a heavy duty primary crushers rugged using in heavy mining, recycling and quarried materials, the mobile jaw crushers are right for these tough operations to reduce the material to smaller sized for further processing. Theres a sturdy tracked mobile jaw crusher with capability ranging from 50 450 tons to meet your specific requirements.Features: Remote control to clear the blockage and adjust jaw gap, automatic iron removal. It is ideal for quarrying and the like industries.

Mobile impact crushers are divided into two categories: mobile horizontal shaft impactor (HSI) and mobile vertical shaft impactor (VSI).The mobile horizontal shaft impact crusher generally used in the primary, secondary or tertiary stage of crushing process. Mobile VSI crusher, or called as mobile sand making machine, is equipped with vertical shaft impact crushing device, usually used in fine crushing and particle shaping process, can produce more uniform cubic end products desirable in the aggregate industry.

Our range of mobile cone crushers meet any size reduction challenge in secondary and tertiary crushing process, provide you with high quality materials and good shape. If the particle size of the processed material is small enough, they can also be operated as the primary crusher.Our hydraulic cone crushers are versatile & intelligent, with a compact design, minimal manual operation, wide range of chamber options and eccentric throw adjustments, making this cone crusher plant one of the most trusted cone crusher in applications.

Mobile construction waste crusher can sort, remove iron, crush, and screen various construction waste (waste concrete, bricks, slag, etc.), and produce finished aggregates of various sizes.After being crushed, construction waste can be used to produce environmentally friendly bricks, non-fired bricks, waterproof bricks, etc., which greatly improves the utilization rate of construction waste and truly realizes resources recycling. Get a price!

Yes, of course, and its complete free of charge.Eastman service: Quality guarantee; Timely delivery; Free design; Installation, debugging, operation training. If you have other questions, just let me know.

impact crusher working principle

impact crusher working principle

Starting from the base working principle that compression is the forcing of two surfaces towards one another to crush the material caught between them. Impact crushing can be of two variations: gravity and dynamic. An example of gravity impact would be dropping a rock onto a steel plate (similar to what goes on into an Autogenous Mill). Dynamic impact could be described as material dropping into a rapidly turning rotor where it receives a smashing blow from a hammer or impeller. Attrition crushing is the reduction of materials by rubbing; primarily a grinding method. Shear crushing is accomplished by breaking along or across lines of cleavage. It is possible, when required, for a crusherto use a combination of two or three of these principles.

Rapidly increasing operating costs for minerals beneficiating plants continue to be the biggest single problem in maximizing profitability from these operations. The average world inflation rate has been increasing over the last decade and shows little sign of easing. The threat of continued increases in the price of fuel oil will eventually increase the cost of electrical power, in direct proportion for most users. This will undoubtedly cause closure of some lower grade ore bodies unless energy utilization efficiencies, particularly in comminution, can be improved.

Most of the recent literature concerning comminution performance improvement has been directed at grinding mill performance. It can be expected that more refined control systems will improve the overall milling energy efficiency, which is normally the largest single cost component of production. However, published gains by such methods to date appear to be limited to something less than 10%.

The second largest cost for comminution processes is normally that for wear metal consumed in grinding operations. Allis-Chalmers has continuing -research programs into all forms of comminution processes involving crushing and grinding. Improved crushing technology shows the way to reducing both energy and wear metal consumption mainly by producing finer feed which will improve downstream grinding mill performance.

A new testing procedure for studying crushing phenomena, presently being perfected by Allis-Chalmers, is described for the first time. These bench scale laboratory tests will give more accurate prediction of both energy requirements and size distribution produced in commercial crushing processes. As a direct result, this machine will allow more accurate comparisons to be made in capital and operating cost expenditures for various combinations of crushing and milling processes.

These new testing procedures can be run on small samples including pieces of drill core material. They could be part of testing and feasibility studies for most new concentrators. The same methods can be used to determine likely yield of various sized crushed products and, therefore, benefit crushed stone producers.

The theoretical and practical phenomena concerning comminution processes have received considerable attention in the literature and are not discussed here in any detail. Instead, the breakage studies in this paper are based on an empirical treatment of the fundamental relationships between energy and the size distributions of processed particles that have been observed both in the laboratory and in large-scale, commercial cone-crushing operations.

Because of the bewildering number of variables encountered when studying comminution processes, most investigators have preferred to assume that the size distribution generated in milling and crushing processes bears some relatively fixed relationship such as those described by Gates-Gaudin-Schuhmann1 or Rosin-Rammler.

Fred Bond, in his Third Theory of Comminution, used the former, essentially assuming that size versus cumulative percent passing that size was represented by a straight line of assumed slope 0.5 below the 80% passing size. Based on this assumption, Bond derived his well-known relationship:

The Work Index for rod and ball mills can be determined from laboratory tests and, as demonstrated by Rowland, the relationship gives us a reasonably accurate tool for the design of rotary grinding mill circuits.

Bonds methods have been less successful in predicting fine crushing performance, however, primarily because the typical crusher feed and product distributions do not meet the assumed conditions necessary for the satisfactory application of his equation (see Fig. (1)).

It is most evident that the curved lines appearing on Fig. (1) do not represent a Gates-Gaudin-Schuhmann size distribution. It is therefore not surprising that Bonds procedures do not work well in this situation. The Rosin- Rammler distribution has also been found inadequate to generally describe crusher products.

Work during the early 60s led to the concept of comminution as a repetitive process, with each step consisting of two basic operations the selection of a particle for breakage and the subsequent breakage of this particle by the machine. In this approach, the process under investigation is modelled by combining the particle selection/breakage event with information on material flow in and out of the comminution device.

Most workers who have used this approach have considered size reduction to be the result of the mechanical operation of the comminution device. This mechanical operation consumes the energy, and size reduction is merely a result of this energy consumption. This viewpoint is reasonably valid for tumbling mills where energy input tends to be constant and the proportion of the energy that is usefully consumed in particle breakage is low (<10%). It does not appear to be valid in compression crushers, however, since breakage energy is a significant proportion (>50%) of the total energy input to the crusher and markedly different power rates (energy input per unit of crusher feed) can be obtained by varying ore feedrates and/or crusher parameters such as closed side setting. It will therefore be necessary to include energy information in any model of the crushing process before it will be possible to accurately predict crusher performance. The inclusion of this energy-size information will significantly increase the complexity of these models.

The single-particle breakage event has been the subject of several studies. Most of these have utilized only sufficient energy to break the particle and do not simulate commercial crushing operations where energy levels are such that catastrophic repetitive breakage usually takes place. This approach to the study of comminution processes does yield valuable information, however, and it is unfortunate that it has not received greater attention.

The Bond Impact Work Index method has been an industry standard for the determination of crusher power requirements but was originally developed to ensure, that sufficient power was connected to primary gyratory crushers. In this method, pieces of rock are fractured by trial and error in the test device shown in Fig. (2), until sufficient impact energy has been applied to break the rock.

Normally, the rock breaks in halves, and in most tests only two and seldom more than three large pieces are observed after fracture. No size distribution information is used in calculating the Bond Impact Work Index from the formula:

KWH/tonne). The procedure works quite well for this type of crusher but tends to understate power requirements in fine crushers where power rates are typically much higher (upwards from 0.25 KWH/tonne).

Because of this, a research program was instituted by Allis-Chalmers Comminution Task Force Committee to break rock in a manner more analogous to that observed within commercial fine crushers. A pendulum type test device similar in most respects to that developed by the United States Bureau of Mines and shown diagrammatically in Fig. (3), was built and has been used in an extensive test program to determine whether it would be possible to predict cone crusher performance.

The rock samples selected for crushing in this device are usually minus 38mm (1-), plus 19mm () in size. The sample rock is weighed and then placed between the platens. The end of the rebound platen is placed in contact with the rebound pendulum and the crushing pendulum is raised to a predetermined vertical height which depends on the size of the sample. The crushing pendulum is then released after striking the crushing platen and breaking the rock, the remaining energy is transferred via the rebound platen to the rebound pendulum. The horizontal distance that the rebound pendulum travels is recorded by displacement of a marker and is subsequently converted to a vertical height.

where Ec = crushing energy E1 = crushing pendulum potential energy (before release) KE = kinetic energy of the two platens E2 = rebound pendulum maximum potential energy (after crushing) EL = system energy loss (sound, heat, vibration)

The system energy loss, EL, is determined by plotting EL as a function of the initial height of the crushing pendulum with no rock present. The major portion of this loss is by vibration. It is felt that the difference between system energy losses with and without rock present in the system is minimal as long as enough initial energy is supplied to result in a small elevation of the rebound pendulum.

The fragments from several rock samples broken under identical conditions were combined for each of the size analyses reported in this paper. Bond Work Indices were also backcalculated from the data using the standard formula, i.e.

Confirmation of the ability of the procedure to provide information suitable for the prediction of crusher performance was obtained by taking feed samples from 31 commercial operations treating a wide range of rocks and ores. At the time of taking a feed sample for laboratory testing in the pendulum device, relevant performance data such as power, feed rate and size distributions for feed and product were taken on the operating crusher. Several thousand rocks have been broken during tests with the device over the past 3 years.

The first thing to notice from these graphs is that there is an extremely good family relationship within each set of size distribution curves. This is somewhat coincidental, since the pendulum curve is the product of a single particle-single impact breakage event and the typical crusher product curve results from multiple particle-multiple impact breakage, but is probably due to two facts:

In order to show that the pendulum product size distribution is sensitive to power rate, several tests have been run on the same feed material at different levels of pendulum input energy. Typical results are shown in Fig. (7) as Schuhmann size distribution (log-log) plots. It can be seen that increasing amounts of fine material are produced with increasing energy input. The same effect was previously demonstrated for an operating crusher in Fig. (1). We can, therefore, conclude from this

that net power rates will be the same in the pendulum and the crusher when the two distributions coincide (as they do in Figs. (4) thru (6). This permits us to determine the efficiency of power utilization in crushers and to predict the product size distribution which will arise from operating crushers at different power rates.

The Bond Work Index figures obtained by backcalculation from the pendulum data are compared with the Net Work Index values obtained from the plants in Fig. (8). The agreement is surprisingly good especially in view of the fact that the 80% passing values do not completely describe the total feed arid product size distributions. This agreement is probably due to the fact that the use of comparable energy levels in both machines gives rise to similar reduction ratios and product size distributions. Because of this, the pendulum test provides a good estimate of the Net Work Index when this is required for current design procedures.

The pendulum product distribution is a breakage function and can be used in models of the process to predict crusher product distributions for different operating conditions. As an example of this approach, Whitens model of the cone crusher, Fig. (9), has been used to simulate the situation given in Fig. (4). The result of this simulation is given in Fig. (10) where it can be seen that very good approximations of crusher performance can be obtained.

The writers are firmly of the opinion that results to date prove that the use of this pendulum device can give more energy-size reduction information in a form readily useable for crusher application. The data can be generated in less time and from a much smaller sample than is required for pilot plant testing. Our present pendulum tester is a research tool and is currently being modified for use in commercial testing of minerals and rocks. More details of this device will be given at a later date.

mobile rock crush plant - henan factory supply best price portable jaw stone crushers plant

mobile rock crush plant - henan factory supply best price portable jaw stone crushers plant

Dewo machinery can provides complete set of crushing and screening line, including Hydraulic Cone Crusher, Jaw Crusher, Impact Crusher, Vertical Shaft Impact Crusher (Sand Making Machine), fixed and movable rock crushing line, but also provides turnkey project for cement production line, ore beneficiation production line and drying production line. Dewo Machinery can provide high quality products, as well as customized optimized technical proposal and one station after- sales service.

Rock Crusher Includes Jaw Crushers,Impact Crushers, Cone Crushers, Sand makers. Quotation! Rock Crusher Machine: Jaw Crushers, Impact Crushers, Cone Crushers. Quotation! Factory Site Visits 24/7 Online Services Resident Engineer Types: Cone Crusher, Jaw Crusher, Impact Crusher Hydraulic Cone Crusher 70-900t/h, For Hard Materials Crush For Granite, Pepple, Gravel, etc 100-200TPH Crusher Plant 100-200TPH Hard Rock Crusher Plant Good For Ballast, Granite, Basalt. Tracked Crusher 30-500TPH Mobile Crusher Plant Track Mounted, Easy Transportantion New Type Rock Crusher Lean Design, Large Cpacity Factory Price, Local Service .algo a,.algo a b,.algo .cite,.algo .cite b,.algo .compText,.algo .compText b{font-weight:normal}.algo .title a{font-size:18px;text-decoration:none !important}.first .algo.fst {margin-top: 0px !important}.last .algo.lst ul.compDlink.algo-options{bottom: 0px;margin-left:25px;}#web .algo .cite, #web .algo .cite b{font-size: 14px;}#web .dd.SrQkLnk{margin-right:2px;}Environmental Portable Small Rock Stone Gravel Mobile Crusher ... www.stonecrushersplant.com environmental CachedMar 29, 2021 We Crush Rock BetterPortable and Mobile Rock Crushing for ...:We know rock crushingover the last several decades, we have developed the kind of solid logistics that have allowed us to deploy and operate rock-crushing operations at hundreds of locations, for dozens of customers, in most of the states on the East Coast, including: Arkansas, Florida, Georgia, Indiana, Maryland, Pennsylvania ...

Mobile Impact Crushing Plant has a capacity of 10-180 t / h. Mobile Impact Crushing Plant is designed to be able to use highway transportation, especially to drive to hard-to-access stone-crushing locations, this tool can reduce installation time compared to the motionless.

A complete mobile crusher plant commonly consists of wheels/crawler, a fixed crusher, sometimes grinder or pulverizer, vibrating screen, movable crusher frame, which not only perfectly demonstrates a self-contained and agile structure, but also unveils the versatility of crushing and screening. So, the portable concrete crusher is the most ...

Apr 15, 2021 Mobile VSI Crushing Plant - YIFAN. PP series portable vertical shaft impact crushing plant is used to crush large materials in two stages, and then screen the crushed materials according to different specifications. It is composed of primary crushing and screening station, secondary crushing and screening station, belt conveyor, etc.

Mar 03, 2021 American designed and manufactured mobile (tracked) and portable (wheeled) crushing plants, screening plants and conveying equipment. Support IROCKs after-market sales/service team prides itself on round-the-clock/weekend service to support any emergency.

A mobile crusher uses the same range of crushing techniques as stationary models to break stone blocks into smaller pieces of a desired size. It can be mounted on a wheeled trailer or be self-propelled on caterpillar treads.

Mobile rock breaker boom systems are typically used on portable crushing plants and are fitted directly to the structure of the mobile crusher. Our compact, multi-purpose mobile rock breaker boom systems have been shown to increase productivity by up to 30% by removing bridged rock and breaking oversize in the hopper without the need to stop a ...

The mobile crushing plant is not limited by the crushing place, and reduces high material transportation cost. It can crush materials on site or nearly. It is widely used in the industry of mining, metallurgy, building materials, traffic, water conservancy and so on.

Aug 24, 2020 Bayan Obo is rich in iron, rare earth, niobium and other metals. Iron is one of the main minerals here. Iron is harder than most stones. According to the traditional iron ore processing process, the jaw crusher is used for rough crushing, and the ore is subjected to primary rolling from large pieces to small pieces.

impact crusher | description | advantages | types of impact crusher | engineering intro

impact crusher | description | advantages | types of impact crusher | engineering intro

The word impact makes sense that in this particular type of crusher some impaction is being used for crushing of rocks. In normal types of crusher pressure is generated for the crushing of rocks. But, impact crushers involve an impact method.

There is a hopper one side that takes the crushing material into the machine. All material is carried only within a cage. This cage has an opening on the end, bottom and on the side. These openings help in escaping the pulverized material from the impact crusher. Normally such type of crusher is used for crushing of materials that are not very hard say soft material and materials that are non-abrasive. For example limestone, coal, gypsum, seeds etc.

Horizontal shaft impactor (HSI) crusher consists of hammers that are fixed to the spinning rotor. Hammers are utilized for the breaking of these rocks. Normally horizontal shaft impactor crusher is used for soft materials and materials like gypsum, phosphate, limestone and weathered shales.

Working principle of vertical shaft impactor is totally different than horizontal shaft impactor. It has a high speed rotor with wearing resistant tips and main chamber (crushing chamber) is designed in such a way so that speed rotor throw the rocks against the high crushing chamber. In vertical shaft impactor crusher predominant force is the velocity of speed rotor.

Rock from ores has an irregular uneven shape. If crushers that used pressure force is used then it results in unpredictable and even more uneven, jagged shape particles. Therefore, use of VSI crusher results in more cubical and even shapes particles. This is so, because vertical shaft impactor crusher utilizes the velocity force that is applied evenly to the surface and the mass of rock.

Great work! That is the type of info that are supposed to be shared across the internet. Disgrace on the search engines for no longer positioning this publish higher! Come on over and talk over with my web site . Thank you =)

Get in Touch with Mechanic
Related Products
Recent Posts
  1. paris efficient portable pyrrhotite magnetic separator sell

  2. high end portable salt milling production line in abuja

  3. sand washing machine portable

  4. tangible benefits portable magnetite flotation cell for sale in dar el beida

  5. mobile crusher plant in rajasthan

  6. south america low price large dolomite mobile crusher sell at a loss

  7. zambia efficient portable construction waste pellet machine manufacturer

  8. mobile crusher gara-pagos

  9. busan high quality portable lime stone crusher sell at a loss

  10. efficient portable quartz ball mill manufacturer in tshwane

  11. efficient environmental rock classifier sell at a loss in huishai

  12. stone crusher plant pollution

  13. high end large quartz ultrafine mill in tunis

  14. cement plant machinery cement plant machinery

  15. harga mesin pex 250 x 1200 jawt crusher merek shanba

  16. hammer grinding attanemt milling

  17. dust catcher for dryer

  18. rock crusher for sale

  19. china reliable performance gypsum powder machine price for sale

  20. jaw crusher constracation