what is a jaw crusher | advantages, types, parts and specifications | quarrying & aggregates

what is a jaw crusher | advantages, types, parts and specifications | quarrying & aggregates

The series of jaw crushers produced by Rayco are widely used in mining and aggregate crushing industries. They are specially developed for crushing the hardest ores and rocks, and are mainly used as primary crushers.

When working, the motor drives the belt and pulley to move the movable jaw up and down through the eccentric shaft. When the movable jaw rises, the angle between the toggle plate and the movable jaw becomes larger, thereby pushing the movable jaw plate closer to the fixed jaw plate, and the material passes through the two jaws. The squeezing and rolling between the plates realize multiple crushing.

When the movable jaw descends, the angle between the toggle plate and the movable jaw becomes smaller. The movable jaw plate leaves the fixed jaw plate under the action of the pull rod and the spring, and the crushed material passes through the discharge port in the lower jaw cavity freely under the action of gravity Unload.

When crushing high hardness and strong corrosive materials, C6X can accomplish the task very well. Its equipment structure, manufacturing technology and material selection determine the high strength of its body. Not only can it be used for coarse crushing of the hardest rocks and ore, but also can be continuously produced in the most demanding production environment on the ground and underground to ensure the maximum production efficiency of customers.

jaw crushers | rock crushers | aggregate crusher | lippmann-milwaukee

jaw crushers | rock crushers | aggregate crusher | lippmann-milwaukee

All Lippmann heavy-duty jaw crushers feature an oversized, heat treated shaft forged of special alloy to provide an exceptionally large eccentric throw. These heavy-duty shafts are paired with two dynamically balanced flywheels, effectively reducing vibration on both portable and stationary crushers. The overhead eccentric configuration does not rely on gravity alone to move material through the chamber. Rather, the inward and downward movement of the swing jaw provides for a forced-feeding motion to maximize output. All shafts are machined and put through a rigorous inspection process before they enter production.

In order to optimize bearing life, only tapered roller bearings are used in Lippmann jaw crushers. The tapered bearings offer a combination of features that spherical bearings are unable to provide. When considering the adjustable clearance, line contact, true rolling motion and ability to carry both radial and thrust loads, the tapered roller bearing is an obvious choice for all jaw crushers. Lippmann proudly stocks a large inventory of all bearing sizes.

The automatic hydraulic toggle has greatly reduced the time it takes to change a jaw crushers setting. As jaw dies wear, the hydraulic toggle can be easily adjusted to maintain a constant closed side setting while in continuous operation. An added benefit of the Lippmann hydraulic toggle package is the ability to provide tramp release once an un-crushable has entered the crushing chamber. Nitrogen-powered automatic hydraulic toggles are available on all mid-sized to large model jaw crushers.

The automatic hydraulic toggle has greatly reduced the time it takes to change a jaw crushers setting. As jaw dies wear, the hydraulic toggle can be easily adjusted to maintain a constant closed side setting while in continuous operation. An added benefit of the Lippmann hydraulic toggle package is the ability to provide tramp release once an un-crushable has entered the crushing chamber. Nitrogen-powered automatic hydraulic toggles are available on all mid-sized to large model jaw crushers.

The automatic hydraulic toggle has greatly reduced the time it takes to change a jaw crushers setting. As jaw dies wear, the hydraulic toggle can be easily adjusted to maintain a constant closed side setting while in continuous operation. An added benefit of the Lippmann hydraulic toggle package is the ability to provide tramp release once an un-crushable has entered the crushing chamber. Nitrogen-powered automatic hydraulic toggles are available on all mid-sized to large model jaw crushers.

jaw crusher for primary crushing | fote machinery

jaw crusher for primary crushing | fote machinery

Applied materials: pebble, calcite, granite, quartz, concrete, dolomite, bluestone, iron ore, limestone, coal gangue, construction waste, ferrosilicon, basalt, sandstone, rocks, ore, glass, cement clinker and some metal.

Jaw crusher, invented by Whitney Blake in 1858, is a primary stone crushing machine for reducing minerals or stones into smaller sizes. It is a must-have machine in wide range of fields like mining, quarrying, and construction industries.

The movable jaw moving from side to side is hung on the mandrel. When the eccentric shaft is turning, its connecting rod moves up and down, which also drives the two toggle plates to do the same movement. Then the moveable jaw moves from side to side to realize crushing and unloading.

Although the movable jaw bears great broken counter-force and the eccentric shaft and the connecting rod bears little stress, industrial enterprises usually make large and middle size machine to crush hard materials. Additionally, the moving track of the movable jaw is an arc with the mandrel as its center.

The circular arc radius equals the distance from the point to the axis with the upper arc being smaller and the lower arc bigger. The crushing efficiency of the jaw crusher is quite high and the crushing ratio is 3-6.

We all know that jaw plate is the most easily worn parts among various of parts installed in jaw crusher. Therefore, in order to use the machine efficiently, the jaw plate should be checked and replaced regularly.

In June 2020, a customer from the Indonesia bought a jaw crusher(spesifikasi jaw crusher) produced by Fote Company to process limestone. According his production and final product demand, we recommand him this jaw stone crusher with capacity of 800t/h.

Powerful Manufacturer: Fote Heavy Machinery Co., Ltd. is a high-tech enterprise integrating R&D, production, sales and service. The hot jaw crushers manufactured by Fote Company can be further dividedinto four types:Blake jaw crusher, Dodge jaw crusher, PE universal jaw crusher and mobile jaw crusher.

Glorious History: In the past 37 years, the company has been committed to crushing equipment, beneficiation equipment, building materials equipment and industrial grinding equipment, providing high-grade sand and gravel solutions and high-end complete sets of equipment for large-scale projects such as highways, railways and hydropower.

Customers' satisfaction: The development of Fote always catches up with the development trend of the market, as a result, the quality of the crusher produced by Fote is guaranteed, and we always gain good feedback from the market.

High-quality Machine: This is mainly due to the crusher's characteristics of high reduction ratio, high productivity, simple structure and reliable performance. And maintenance is convenient and practical.

As a leading mining machinery manufacturer and exporter in China, we are always here to provide you with high quality products and better services. Welcome to contact us through one of the following ways or visit our company and factories.

Based on the high quality and complete after-sales service, our products have been exported to more than 120 countries and regions. Fote Machinery has been the choice of more than 200,000 customers.

failure analysis of jaw crusher and its components using anova | springerlink

failure analysis of jaw crusher and its components using anova | springerlink

In this present scenario, with the subsequent rise in the ever increasing demand of production from mines, the role of mineral processing plant has grown leaps and bounds with time. So, the need of the hour is to have sophisticated and handy equipments which can be operated with ease and can help in enhancing the productivity from mines. In this regard, Crusher is one of the primary and essential equipment which is employed for comminuting the mineral in processing plants. Hence, any kind of failure of its components will accordingly hinder the performance of the plant. Therefore, to minimize sudden failures, proper brainstorming needs to be done to improve performance and operational reliability of jaw crushers and its components. Though traditional maintenance practices exist in mineral processing plants, a methodical approach to analyse the failure rates of components is imperative for improving operational reliability of equipment by implementing effective maintenance strategies. This paper considers the methods for analysing failures of jaw crusher and its critical components in a mineral processing plant using statistical tools namely life data analysis (LDA) and analysis of variance (ANOVA). The shape and scale parameters using LDA method have been also examined. Further by implementing ANOVA, parameters such as the shape, scale and time are evaluated to examine the failure rates of crusher and its components. The data for these three parameters have been generated through Monte-Carlo Simulation method. A 23 factorial design is used for the failure rate analysis.

Ross R (1994) Graphical method for plotting and evaluating Weibull distribution data. In: Proceeding of the international conference properties and applications of dielectric materials, vol 1, pp 250253

Carpentier AS, Riva A, Tisseur P, Didier G, Henaut A (2004) The operons, a criterion to compare the reliability of transcriptome analysis tools: ICA is more reliable than ANOVA, PLS and PCA. Comput Biol Chem 28:310

Hajjaji N, Renaudina V, Houasb A, Ponsa MN (2010) Factorial design of experiment (DOE) for parametric energetic investigation of a steam methane reforming process for hydrogen production. Chem Eng Process 49:500507

Baradeswaran A, Vettivel SC, Perumal AE, Selvakumar N, Issac RF (2014) Experimental investigation on mechanical behaviour, modelling and optimization of wear parameters of B4C and graphite reinforced aluminium hybrid composites. Mater Des 63:620632

Mandal N, Doloi B, Mondal B (2011) Development of flank wear prediction model of Zirconia Toughened Alumina (ZTA) cutting tool using response surface methodology. Int J Refract Metal Hard Mater 29:273280

Sinha, R.S., Mukhopadhyay, A.K. Failure analysis of jaw crusher and its components using ANOVA. J Braz. Soc. Mech. Sci. Eng. 38, 665678 (2016). https://doi.org/10.1007/s40430-015-0393-6

impact crusher - an overview | sciencedirect topics

impact crusher - an overview | sciencedirect topics

The impact crusher (typically PE series) is widely used and of high production efficiency and good safety performance. The finished product is of cube shape and the tension force and crack is avoided. Compared with hammer crusher, the impact crusher is able to fully utilize the high-speed impact energy of entire rotor. However, due to the crushing board that is easy to wear, it is also limited in the hard material crushing. The impact crusher is commonly used for the crushing of limestone, coal, calcium carbide, quartz, dolomite, iron pyrites, gypsum, and chemical raw materials of medium hardness. Effect of process conditions on the production capacity of crushed materials is listed in Table8.10.

Depending on the size of the debris, it may either be ready to enter the recycling process or need to be broken down to obtain a product with workable particle sizes, in which case hydraulic breakers mounted on tracked or wheeled excavators are used. In either case, manual sorting of large pieces of steel, wood, plastics and paper may be required, to minimise the degree of contamination of the final product.

The three types of crushers most commonly used for crushing CDW materials are the jaw crusher, the impact crusher and the gyratory crusher (Figure 4.4). A jaw crusher consists of two plates, with one oscillating back and forth against the other at a fixed angle (Figure 4.4(a)) and it is the most widely used in primary crushing stages (Behera etal., 2014). The jaw crusher can withstand large and hard-to-break pieces of reinforced concrete, which would probably cause the other crushing machines to break down. Therefore, the material is initially reduced in jaw crushers before going through any other crushing operation. The particle size reduction depends on the maximum and minimum size of the gap at the plates (Hansen, 2004).

An impact crusher breaks the CDW materials by striking them with a high-speed rotating impact, which imparts a shearing force on the debris (Figure 4.4(b)). Upon reaching the rotor, the debris is caught by steel teeth or hard blades attached to the rotor. These hurl the materials against the breaker plate, smashing them into smaller particle sizes. Impact crushers provide better grain-size distribution of RA for road construction purposes, and they are less sensitive to material that cannot be crushed, such as steel reinforcement.

Generally, jaw and impact crushers exhibit a large reduction factor, defined as the ratio of the particle size of the input to that of the output material. A jaw crusher crushes only a small proportion of the original aggregate particles but an impact crusher crushes mortar and aggregate particles alike and thus generates a higher amount of fine material (OMahony, 1990).

Gyratory crushers work on the same principle as cone crushers (Figure 4.4(c)). These have a gyratory motion driven by an eccentric wheel. These machines will not accept materials with a large particle size and therefore only jaw or impact crushers should be considered as primary crushers. Gyratory and cone crushers are likely to become jammed by fragments that are too large or too heavy. It is recommended that wood and steel be removed as much as possible before dumping CDW into these crushers. Gyratory and cone crushers have advantages such as relatively low energy consumption, a reasonable amount of control over the particle size of the material and production of low amounts of fine particles (Hansen, 2004).

For better control of the aggregate particle size distribution, it is recommended that the CDW should be processed in at least two crushing stages. First, the demolition methodologies used on-site should be able to reduce individual pieces of debris to a size that the primary crusher in the recycling plant can take. This size depends on the opening feed of the primary crusher, which is normally bigger for large stationary plants than for mobile plants. Therefore, the recycling of CDW materials requires careful planning and communication between all parties involved.

A large proportion of the product from the primary crusher can result in small granules with a particle size distribution that may not satisfy the requirements laid down by the customer after having gone through the other crushing stages. Therefore, it should be possible to adjust the opening feed size of the primary crusher, implying that the secondary crusher should have a relatively large capacity. This will allow maximisation of coarse RA production (e.g., the feed size of the primary crusher should be set to reduce material to the largest size that will fit the secondary crusher).

The choice of using multiple crushing stages mainly depends on the desired quality of the final product and the ratio of the amounts of coarse and fine fractions (Yanagi etal., 1998; Nagataki and Iida, 2001; Nagataki etal., 2004; Dosho etal., 1998; Gokce etal., 2011). When recycling concrete, a greater number of crushing processes produces a more spherical material with lower adhered mortar content (Pedro etal., 2015), thus providing a superior quality of material to work with (Lotfi etal., 2017). However, the use of several crushing stages has some negative consequences as well; in addition to costing more, the final product may contain a greater proportion of finer fractions, which may not always be a suitable material.

Reduction of the broken rock material, or oversized gravel material, to an aggregate-sized product is achieved by various types of mechanical crusher. These operations may involve primary, secondary and even sometimes tertiary phases of crushing. There are many different types of crusher, such as jaw, gyratory, cone (or disc) and impact crushers (Fig. 15.9), each of which has various advantages and disadvantages according to the properties of the material being crushed and the required shape of the aggregate particles produced.

Fig. 15.9. Diagrams to illustrate the basic actions of some types of crusher: solid shading highlights the hardened wear-resistant elements. (A) Single-toggle jaw crusher, (B) disc or gyrosphere crusher, (C) gyratory crusher and (D) impact crusher.

It is common, but not invariable, for jaw or gyratory crushers to be utilised for primary crushing of large raw feed, and for cone crushers or impact breakers to be used for secondary reduction to the final aggregate sizes. The impact crushing machines can be particularly useful for producing acceptable particle shapes (Section 15.5.3) from difficult materials, which might otherwise produce unduly flaky or elongated particles, but they may be vulnerable to abrasive wear and have traditionally been used mostly for crushing limestone.

Reduction of the broken rock material, or oversized gravel material, to an aggregate-sized product is achieved by various types of mechanical crusher. These operations may involve primary, secondary and even sometimes tertiary phases of crushing. There are many different types of crusher, such as jaw, gyratory, cone (or disc) and impact crushers (Figure 16.8), each of which has various advantages and disadvantages according to the properties of the material being crushed and the required shape of the aggregate particles produced.

Fig. 16.8. Diagrams to illustrate the basic actions of some types of crusher: solid shading highlights the hardened wear-resistant elements (redrawn, adapted and modified from Ref. 39). (a) Single-toggle jaw crusher, (b) disc or gyrosphere crusher, (c) gyratory crusher, and (d) impact crusher.

It is common, but not invariable, for jaw or gyratory crushers to be utilised for primary crushing of large raw feed, and for cone crushers or impact breakers to be used for secondary reduction to the final aggregate sizes. The impact crushing machines can be particularly useful for producing acceptable particle shapes (section 16.5.3) from difficult materials, which might otherwise produce unduly flaky or elongated particles, but they may be vulnerable to abrasive wear and have traditionally been used mostly for crushing limestone.

The main sources of RA are either from construction and ready mixed concrete sites, demolition sites or from roads. The demolition sites produce a heterogeneous material, whereas ready mixed concrete or prefabricated concrete plants produce a more homogeneous material. RAs are mainly produced in fixed crushing plant around big cities where CDWs are available. However, for roads and to reduce transportation cost, mobile crushing installations are used.

The materiel for RA manufacturing does not differ from that of producing NA in quarries. However, it should be more robust to resist wear, and it handles large blocks of up to 1m. The main difference is that RAs need the elimination of contaminants such as wood, joint sealants, plastics, and steel which should be removed with blast of air for light materials and electro-magnets for steel. The materials are first separated from other undesired materials then treated by washing and air to take out contamination. The quality and grading of aggregates depend on the choice of the crusher type.

Jaw crusher: The material is crushed between a fixed jaw and a mobile jaw. The feed is subjected to repeated pressure as it passes downwards and is progressively reduced in size until it is small enough to pass out of the crushing chamber. This crusher produces less fines but the aggregates have a more elongated form.

Hammer (impact) crusher: The feed is fragmented by kinetic energy introduced by a rotating mass (the rotor) which projects the material against a fixed surface causing it to shatter causing further particle size reduction. This crusher produces more rounded shape.

The type of crusher and number of processing stages have considerable influence on the shape and size of RA. In general, for the same size, RAs tend to be coarser, more porous and rougher than NAs, due to the adhered mortar content (Dhir etal., 1999). After the primary crushing, which is normally performed using jaw crushers (Fong etal., 2004), it is preferable to adopt a secondary crushing stage (with cone crushers or impact crushers) (CCANZ, 2011) to further reduce the size of the CDW, producing more regularly shaped particles (Barbudo etal., 2012; Ferreira etal., 2011; Fonseca etal., 2011; Pedro etal., 2014, 2015; Gonzlez-Fonteboa and Martnez-Abella, 2008; Maultzsch and Mellmann, 1998; Dhir and Paine, 2007; Chidiroglou etal., 2008).

CDW that is subjected to a jaw crushing stage tends to result only in flatter RA (Ferreira etal., 2011; Fonseca etal., 2011; Hendriks, 1998; Tsoumani etal., 2015). It is possible to produce good-quality coarse RA within the specified size range by adjusting the crusher aperture (Hansen, 1992). In addition, the number of processing stages needs to be well thought out to ensure that the yield of coarse RA is not affected and that the quantity of fine RA is kept to the minimum (Angulo etal., 2004). This is because the finer fraction typically exhibits lower quality, as it accumulates a higher amount of pulverised old mortar (Etxeberria etal., 2007b; Meller and Winkler, 1998). Fine RA resulting from impact crushers tends to exhibit greater angularity and higher fineness modulus compared with standard natural sands (Lamond etal., 2002; Hansen, 1992; Buyle-Bodin and Hadjieva-Zaharieva, 2002).

One of the commonly known issues related to the use of RCA is its ability to generate a considerable amount of fines when the material is used (Thomas etal., 2016). As the RCA particles are moved around, they impact against one another, leading to the breakage of the friable adhered mortar, which may give rise to some technical problems such as an increase in the water demand of concrete mixes when used as an NA replacement (Thomas etal., 2013a,b; Poon etal., 2007).

The coarse fraction of RMA tends to show a higher shape index owing to the shape of the original construction material (e.g., perforated ceramic bricks) (De Brito etal., 2005). This can pose a problem in future applications as RMA may not compact as efficiently as RCA or NA (Khalaf and DeVenny, 2005). Its shape index may be reduced if the material is successively broken down to a lower particle size (De Brito etal., 2005).

Impact crushers (e.g., hammer mills and impact mills) employ sharp blows applied at high speed to free-falling rocks where comminution is by impact rather than compression. The moving parts are beaters, which transfer some of their kinetic energy to the ore particles upon contact. Internal stresses created in the particles are often large enough to cause them to shatter. These forces are increased by causing the particles to impact upon an anvil or breaker plate.

There is an important difference between the states of materials crushed by pressure and by impact. There are internal stresses in material broken by pressure that can later cause cracking. Impact causes immediate fracture with no residual stresses. This stress-free condition is particularly valuable in stone used for brick-making, building, and roadmaking, in which binding agents (e.g., tar) are subsequently added. Impact crushers, therefore, have a wider use in the quarrying industry than in the metal-mining industry. They may give trouble-free crushing on ores that tend to be plastic and pack when the crushing forces are applied slowly, as is the case in jaw and gyratory crushers. These types of ore tend to be brittle when the crushing force is applied instantaneously by impact crushers (Lewis et al., 1976).

Impact crushers are also favored in the quarry industry because of the improved product shape. Cone crushers tend to produce more elongated particles because of their ability to pass through the chamber unbroken. In an impact crusher, all particles are subjected to impact and the elongated particles, having a lower strength due to their thinner cross section, would be broken (Ramos et al., 1994; Kojovic and Bearman, 1997).

Figure 6.23(a) shows the cross section of a typical hammer mill. The hammers (Figure 6.23(b)) are made from manganese steel or nodular cast iron containing chromium carbide, which is extremely abrasion resistant. The breaker plates are made of the same material.

The hammers are pivoted so as to move out of the path of oversize material (or tramp metal) entering the crushing chamber. Pivoted (swing) hammers exert less force than they would if rigidly attached, so they tend to be used on smaller impact crushers or for crushing soft material. The exit from the mill is perforated, so that material that is not broken to the required size is retained and swept up again by the rotor for further impacting. There may also be an exit chute for oversize material which is swept past the screen bars. Certain design configurations include a central discharge chute (an opening in the screen) and others exclude the screen, depending on the application.

The hammer mill is designed to give the particles velocities of the order of that of the hammers. Fracture is either due to impact with the hammers or to the subsequent impact with the casing or grid. Since the particles are given high velocities, much of the size reduction is by attrition (i.e., particle on particle breakage), and this leads to little control on product size and a much higher proportion of fines than with compressive crushers.

The hammers can weigh over 100kg and can work on feed up to 20cm. The speed of the rotor varies between 500 and 3,000rpm. Due to the high rate of wear on these machines (wear can be taken up by moving the hammers on the pins) they are limited in use to relatively non-abrasive materials. They have extensive use in limestone quarrying and in the crushing of coal. A great advantage in quarrying is the fact that they produce a relatively cubic product.

A model of the swing hammer mill has been developed for coal applications (Shi et al., 2003). The model is able to predict the product size distribution and power draw for given hammer mill configurations (breaker gap, under-screen orientation, screen aperture) and operating conditions (feed rate, feed size distribution, and breakage characteristics).

For coarser crushing, the fixed hammer impact mill is often used (Figure 6.24). In these machines the material falls tangentially onto a rotor, running at 250500rpm, receiving a glancing impulse, which sends it spinning toward the impact plates. The velocity imparted is deliberately restricted to a fraction of the velocity of the rotor to avoid high stress and probable failure of the rotor bearings.

The fractured pieces that can pass between the clearances of the rotor and breaker plate enter a second chamber created by another breaker plate, where the clearance is smaller, and then into a third smaller chamber. The grinding path is designed to reduce flakiness and to produce cubic particles. The impact plates are reversible to even out wear, and can easily be removed and replaced.

The impact mill gives better control of product size than does the hammer mill, since there is less attrition. The product shape is more easily controlled and energy is saved by the removal of particles once they have reached the size required.

Large impact crushers will reduce 1.5m top size ROM ore to 20cm, at capacities of around 1500th1, although units with capacities of 3000th1 have been manufactured. Since they depend on high velocities for crushing, wear is greater than for jaw or gyratory crushers. Hence impact crushers are not recommended for use on ores containing over 15% silica (Lewis et al., 1976). However, they are a good choice for primary crushing when high reduction ratios are required (the ratio can be as high as 40:1) and the ore is relatively non-abrasive.

Developed in New Zealand in the late 1960s, over the years it has been marketed by several companies (Tidco, Svedala, Allis Engineering, and now Metso) under various names (e.g., duopactor). The crusher is finding application in the concrete industry (Rodriguez, 1990). The mill combines impact crushing, high-intensity grinding, and multi-particle pulverizing, and as such, is best suited in the tertiary crushing or primary grinding stage, producing products in the 0.0612mm size range. It can handle feeds of up to 650th1 at a top size of over 50mm. Figure 6.22 shows a Barmac in a circuit; Figure 6.25 is a cross-section and illustration of the crushing action.

The basic comminution principle employed involves acceleration of particles within a special ore-lined rotor revolving at high speed. A portion of the feed enters the rotor, while the remainder cascades to the crushing chamber. Breakage commences when rock enters the rotor, and is thrown centrifugally, achieving exit velocities up to 90ms1. The rotor continuously discharges into a highly turbulent particle cloud contained within the crushing chamber, where reduction occurs primarily by rock-on-rock impact, attrition, and abrasion.

This crusher developed by Jaques (now Terex Mineral Processing Solutions) has several internal chamber configurations available depending on the abrasiveness of the ore. Examples include the Rock on Rock, Rock on Anvil and Shoe and Anvil configurations (Figure 6.26). These units typically operate with 5 to 6 steel impellers or hammers, with a ring of thin anvils. Rock is hit or accelerated to impact on the anvils, after which the broken fragments freefall into the discharge chute and onto a product conveyor belt. This impact size reduction process was modeled by Kojovic (1996) and Djordjevic et al. (2003) using rotor dimensions and speed, and rock breakage characteristics measured in the laboratory. The model was also extended to the Barmac crushers (Napier-Munn et al., 1996).

Figure 9.1 shows common aluminum oxide-based grains. Also called corundum, alumina ore was mined as early as 2000 BC in the Greek island of Naxos. Its structure is based on -Al2O3 and various admixtures. Traces of chromium give alumina a red hue, iron makes it black, and titanium makes it blue. Its triagonal system reduces susceptibility to cleavage. Precious grades of Al2O3 are used as gemstones, and include sapphire, ruby, topaz, amethyst, and emerald.

Charles Jacobs (1900), a principal developer, fused bauxite at 2200C (4000F) before the turn of the 20th century. The resulting dense mass was crushed into abrasive particles. Presently, alumina is obtained by smelting aluminum alloys containing Al2O3 in electric furnaces at around 1260C (2300F), a temperature at which impurities separate from the solution and aluminum oxide crystallizes out. Depending upon the particular process and chemical composition there are a variety of forms of aluminum oxide. The poor thermal conductivity of alumina (33.5W/mK) is a significant factor that affects grinding performance. Alumina is available in a large range of grades because it allows substitution of other oxides in solid solution, and defect content can be readily controlled.

For grinding, lapping, and polishing bearing balls, roller races, and optical glasses, the main abrasive employed is alumina. Its abrasive characteristics are established during the furnacing and crushing operations, so very little of what is accomplished later significantly affects the features of the grains.

Aluminum oxide is tougher than SiC. There are four types of gradations for toughness. The toughest grain is not always the longest wearing. A grain that is simply too tough for an application will become dull and will rub the workpiece, increasing the friction, creating heat and vibrations. On the other hand, a grain that is too friable will wear away rapidly, shortening the life of the abrasive tool. Friability is a term used to describe the tendency for grain fractures to occur under load. There is a range of grain toughness suitable for each application. The white friable aluminum oxide is almost always bonded by vitrification. It is the main abrasive used in tool rooms because of its versatility for a wide range of materials. In general, the larger the crystals, the more friable the grain. The slower the cooling process, the larger are the crystals. To obtain very fine crystals, the charge is cooled as quickly as possible, and the abrasive grain is fused in small pigs of up to 2ton. Coarse crystalline abrasive grains are obtained from 5 to 6ton pigs allowed to cool in the furnace shell.

The raw material, bauxite, containing 8590% alumina, 25% TiO2, up to 10% iron oxide (Fe2O3), silica, and basic oxides, is fused in an electric-arc furnace at 2600C (4700F). The bed of crushed and calcined bauxite, mixed with coke and iron to remove impurities, is poured into the bottom of the furnace where a carbon starter rod is laid down. A couple of large vertical carbon rods are then brought down to touch and a heavy current applied. The starter rod is rapidly consumed, by which time the heat melts the bauxite, which then becomes an electrolyte. Bauxite is added over several hours to build up the volume of melt. Current is controlled by adjusting the height of the electrodes, which are eventually consumed in the process.

After cooling, the alumina is broken up and passed through a series of hammer, beater, crush, roller, and/or ball mills to reduce it to the required grain size and shape, producing either blocky or thin splintered grains. After milling, the product is sieved to the appropriate sizes down to about 40 m (#400). The result is brown alumina containing typically 3% TiO2. Increased TiO2 content increases toughness while reducing hardness. Brown alumina has a Knoop hardness of 2090 and a medium friability.

Electrofused alumina is also made using low-soda Bayer process alumina that is more than 99% pure. The resulting alumina grain is one of the hardest, but also the most friable, of the alumina family providing a cool cutting action. This abrasive in a vitrified bond is, therefore, suitable for precision grinding.

White aluminum oxide is one of the most popular grades for micron-size abrasive. To produce micron sizes, alumina is ball-milled or vibro-milled after crushing and then traditionally separated into different sizes using an elutriation process. This consists of passing abrasive slurry and water through a series of vertical columns. The width of the columns is adjusted to produce a progressively slower vertical flow velocity from column to column. Heavier abrasive settles out in the faster flowing columns while lighter particles are carried over to the next. The process is effective down to about 5 m and is also used for micron sizing of SiC. Air classification has also been employed.

White 99% pure aluminum oxide, called mono-corundum, is obtained by sulfidation of bauxite, which outputs different sizes of isometric corundum grains without the need for crushing. The crystals are hard, sharp, and have better cleavage than other forms of aluminum oxides, which qualifies it for grinding hardened steels and other tough and ductile materials. Fine-grained aluminum oxide with a good self-sharpening effect is used for finishing hardened and high-speed steels, and for internal grinding.

Not surprisingly, since electrofusion technology has been available for the last one hundred years, many variations in the process exist both in terms of starting compositions and processing routes. For example:

Red-brown or gray regular alumina. Contains 9193% Al2O3 and has poor cleavage. This abrasive is used in resinoid and vitrified bonds and coated abrasives for rough grinding when the risk of rapid wheel wear is low.

Chrome addition. Semi-fine aloxite, pink with 0.5% chromium oxide (Cr2O3), and red with 15% Cr2O3, lies between common aloxite, having less than 95% Al2O3 and more than 2% TiO2, and fine aloxite, which has more than 95% Al2O3 and less than 2% TiO2. The pink grain is slightly harder than white alumina, while the addition of a small amount of TiO2 increases its toughness. The resultant product is a medium-sized grain available in elongated, or blocky but sharp, shapes. Ruby alumina has a higher chrome oxide content of 3% and is more friable than pink alumina. The grains are blocky, sharp edged, and cool cutting, making them popular for tool room and dry grinding of steels, e.g., ice skate sharpening. Vanadium oxide has also been used as an additive giving a distinctive green hue.

Zirconia addition. Aluminazirconia is obtained during the production process by adding 1040% ZrO2 to the alumina. There are at least three different aluminazirconia compositions used in grinding wheels: 75% Al2O3 and 25% ZrO2, 60% Al2O3 and 40% ZrO2, and finally, 65% Al2O3, 30% ZrO2, and 5% TiO2. The manufacture usually includes rapid solidification to produce a fine grain and tough structure. The resulting abrasives are fine grain, tough, highly ductile, and give excellent life in medium to heavy stock removal applications and grinding with high pressures, such as billet grinding in foundries.

Titania addition. Titaniaaloxite, containing 95% Al2O3 and approximately 3% Ti2O3, has better cutting ability and improved ductility than high-grade bauxite common alumina. It is recommended when large and variable mechanical loads are involved.

Single crystal white alumina. The grain growth is carefully controlled in a sulfide matrix and is separated by acid leaching without crushing. The grain shape is nodular which aids bond retention, avoiding the need for crushing and reducing mechanical defects from processing.

Post-fusion processing methods. This type of particle reduction method can greatly affect grain shape. Impact crushers such as hammer mills create a blocky shape while roll crushers cause splintering. It is possible, using electrostatic forces to separate sharp shapes from blocky grains, to provide grades of the same composition but with very different cutting actions.

The performance of the abrasive can also be altered by heat treatment, particularly for brown alumina. The grit is heated to 11001300 C (20152375 F), depending on the grit size, in order to anneal cracks and flaws created by the crushing process. This can enhance toughness by 2540%.

Finally, several coating processes exist to improve bonding of the grains in the grinding wheel. Red Fe2O3 is applied at high temperatures to increase the surface area for better bonding in resin cut-off wheels. Silane is applied for some resin bond wheel applications to repel coolant infiltration between the bond and abrasive grit, and thus protect the resin bond.

A limitation of electrofusion is that the resulting abrasive crystal structure is very large; an abrasive grain may consist of only one to three crystals. Consequently, when grain fracture occurs, the resulting particle loss may be a large proportion of the whole grain. This results in inefficient grit use. One way to avoid this is to dramatically reduce the crystal size.

The earliest grades of microcrystalline grits were produced as early as 1963 (Ueltz, 1963) by compacting a fine-grain bauxite slurry, granulating to the desired grit size, and sintering at 1500C (2735F). The grain shape and aspect ratio could be controlled by extruding the slurry.

One of the most significant developments since the invention of the Higgins furnace was the release in 1986, by the Norton Company, of seeded gel (SG) abrasive (Leitheiser and Sowman, 1982; Cottringer et al., 1986). This abrasive was a natural outcome of the wave of technology sweeping the ceramics industry at that time to develop high strength engineering ceramics using chemical precipitation methods. This class of abrasives is often termed ceramic. SG is produced by a chemical process. In a precursor of boehmite, MgO is first precipitated to create 50-m-sized aluminamagnesia spinel seed crystals. The resulting gel is dried, granulated to size, and sintered at 1200C (2200F). The resulting grains are composed of a single-phase -alumina structure with a crystalline size of about 0.2m. Defects from crushing are avoided; the resulting abrasive is unusually tough but self-sharpening because fracture now occurs at the micron level.

With all the latest technologies, it took significant time and application knowledge to understand how to apply SG. The abrasive was so tough that it had to be blended with regular fused abrasives at levels as low as 5% to avoid excessive grinding forces. Typical blends are now five SGs (50%), three SGs (30%), and one SG (10%). These blended abrasive grades can increase wheel life by up to a factor of 10 over regular fused abrasives, although manufacturing costs are higher.

In 1981, prior to the introduction of SG, the 3M Co. introduced a solgel abrasive material called Cubitron for use in coated abrasive fiber discs (Bange and Orf, 1998). This was a submicron chemically precipitated and sintered material but, unlike SG, had a multiphase composite structure that did not use seed grains to control crystalline size. The value of the material for grinding wheel applications was not recognized until after the introduction of SG. In the manufacture of Cubitron, alumina is co-precipitated with various modifiers such as magnesia, yttria, lanthana, and neodymia to control microstructural strength and surface morphology upon subsequent sintering. For example, one of the most popular materials, Cubitron 321, has a microstructure containing submicron platelet inclusions which act as reinforcements somewhat similar to a whisker-reinforced ceramic (Bange and Orf, 1998).

Direct comparison of the performance of SG and Cubitron is difficult because the grain is merely one component of the grinding wheel. SG is harder (21GPa) than Cubitron (19GPa). Experimental evidence suggests that wheels made from SG have longer life, but Cubitron is freer cutting. Cubitron is the preferred grain in some applications from a cost/performance viewpoint. Advanced grain types are prone to challenge from a well-engineered, i.e., shape selected, fused grain that is the product of a lower cost, mature technology. However, it is important to realize that the wheel cost is often insignificant compared to other grinding process costs in the total cost per part.

The SG grain shape can be controlled by extrusion. Norton has taken this concept to an extreme and in 1999 introduced TG2 (extruded SG) grain in a product called ALTOS. The TG2 grains have the appearance of rods with very long aspect ratios. The resulting packing characteristics of these shapes in a grinding wheel create a high strength, lightweight structure with porosity levels as high as 70% or even greater. The grains touch each other at only a few points, where a bond also concentrates in the same way as a spot weld. The product offers potential for higher stock removal rates and higher wheelspeeds due to the strength and density of the resulting wheel body (Klocke and Muckli, 2000).

Recycling of concrete involves several steps to generate usable RCA. Screening and sorting of demolished concrete from C&D debris is the first step of recycling process. Demolished concrete goes through different crushing processes to acquire desirable grading of recycled aggregate. Impact crusher, jaw crusher, cone crusher or sometimes manual crushing by hammer are preferred during primary and secondary crushing stage of parent concrete to produce RA. Based on the available literature step by step flowchart for recycling of aggregate is represented in Fig. 1. Some researchers have also developed methods like autogenous cleaning process [46], pre-soaking treatment in water [47], chemical treatment, thermal treatment [48], microwave heating method [49] and mechanical grinding method for removing adhered mortar to obtain high quality of RA. Depending upon the amount of attached mortar, recycled aggregate has been classified into different categories as shown in Fig. 2.

Upon arrival at the recycling plant, CDW may either enter directly into the processing operation or need to be broken down to obtain materials with workable particle sizes, in which case hydraulic breakers mounted on tracked or wheeled excavators are used. In either case, manual sorting of large pieces of steel, wood, plastics and paper may be required, to minimize the degree of contamination.

The three types of crushers most used for crushing CDW are jaw, impact, and gyratory crushers (Fig.8). A jaw crusher consists of two plates fixed at an angle (Fig.8a); one plate remains stationary while the other oscillates back and forth relative to it, crushing the material passing between them. This crusher can withstand large pieces of reinforced concrete, which would probably cause other types of crushers to break down. Therefore, the material is initially reduced in jaw crushers before going through other types. The particle size reduction depends on the maximum and minimum size of the gap at the plates. Jaw crushers were found to produce RA with the most suitable grain-size distribution for concrete production (Molin etal., 2004).

An impact crusher breaks CDW by striking them with a high speed rotating impact, which imparts a shearing force on the debris (Fig.8b). Materials fall onto the rotor and are caught by teeth or hard steel blades fastened to the rotor, which hurl them against the breaker plate, smashing them to smaller-sized particles. Impact crushers provide better grain-size distribution of RA for road construction purposes and are less sensitive to material that cannot be crushed (i.e. steel reinforcement).

Gyratory crushers, which work on the same principle as cone crushers (Fig.8c), exhibit a gyratory motion driven by an eccentric wheel and will not accept materials with large particle sizes as they are likely to become jammed. However, gyratory and cone crushers have advantages such as relatively low energy consumption, reasonable amount of control over particle size and production of low amount of fine particles.

Generally, jaw and impact crushers have a large reduction factor, defined as the relationship between the input's particle size and that of the output. A jaw crusher crushes only a small proportion of the original aggregate particles but an impact crusher crushes mortar and aggregate particles alike, and thus may generate twice the amount of fines for the same maximum size of particle (O'Mahony, 1990).

In order to produce RA with predictable grading curve, it is better to process debris in two crushing stages, at least. It may be possible to consider a tertiary crushing stage and further, which would undoubtedly produce better quality coarse RA (i.e. less adhered mortar and with a rounder shape). However, concrete produced with RA subjected to a tertiary crushing stage may show only slightly better performance than that made with RA from a secondary crushing stage (Gokce etal., 2011; Nagataki etal., 2004). Furthermore, more crushing stages would yield products with decreasing particle sizes, which contradicts the mainstream use of RA (i.e. coarser RA fractions are preferred, regardless of the application). These factors should be taken into account when producing RA as, from an economical and environmental point of view, it means that relatively good quality materials can be produced with lower energy consumption and with a higher proportion of coarse aggregates, if the number of crushing stages is prudently reduced.

jaw crusher - an overview | sciencedirect topics

jaw crusher - an overview | sciencedirect topics

The mechanism of movement of rocks down the crusher chamber determines the capacity of jaw crushers. The movement can be visualised as a succession of wedges (jaw angles) that reduce the size of particles progressively by compression until the smaller particles pass through the crusher in a continuous procession. The capacity of a jaw crusher per unit time will therefore depend on the time taken for a particle to be crushed and dropped through each successive wedge until they are discharged through the bottom. The frequency of opening and closing of the jaws, therefore, exerts a significant action on capacity.

Following the above concepts, several workers, such as Hersam [6]. Gaudin [7], Taggart [8], Rose and English [9], Lynch [3], Broman [10], have attempted to establish mathematical models determining the capacity.

Although it is not truly applicable to hard rocks, for soft rocks it is reasonably acceptable [1]. This expression, therefore, is of limited use. The expressions derived by others are more appropriate and therefore are discussed and summarised here.

Rose and English [9] determined the capacity of a jaw crusher by considering the time taken and the distance travelled by the particles between the two plates after being subjected to repeat crushing forces between the jaws. Therefore, dry particles wedged between level A and level B (Figure4.4) would leave the crusher at the next reverse movement of the jaw. The maximum size of particle dropping out of the crusher (dMAX) will be determined by the maximum distance set at the bottom between the two plates (LMAX). The rate at which the crushed particles pass between the jaws would depend on the frequency of reversal of the moving jaw.

The distance, h, between A and B is equal to the distance the particle would fall during half a cycle of the crusher eccentric, provided the cycle frequency allows sufficient time for the particle to do so. If is the number of cycles per minute, then the time for one complete cycle is [60/] seconds and the time for half a cycle is [60/2]. Thus, h, the greatest distance through which the fragments would fall freely during this period, will be

Then for a fragmented particle to fall a distance h in the crusher, the frequency must be less than that given by Equation (4.10). The distance h can be expressed in terms of LMIN and LMAX, provided the angle between the jaws, , is known. From Figure4.4, it can be seen that

Rose and English [9] observed that with increasing frequency of the toggle movement the production increased up to a certain value but decreased with a further increase in frequency. During comparatively slower jaw movements and frequency, Rose and English derived the capacity, QS, as

Equation (4.12) indicates that the capacity, QS, is directly proportional to frequency. At faster movement of the jaws where the particle cannot fall the complete distance, h, during the half cycle, QF was found to be inversely proportional to frequency and could be expressed by the relation

The relationship between the frequency of operation and capacity of the jaw crusher can be seen in Figure4.5. This figure is plotted for values of LT=0.228m, W=1.2m, LMIN=0.10m, R=10, G=1 and the value of varied between 50 and 300rpm.

It should be noted that while considering the volume rates, no consideration was made to the change of bulk density of the material or the fractional voidage. However, during the crushing operation the bulk density of the ore changes as it passes down the crusher. The extent of the change depends on

PK is considered a size distribution function and is related to capacity by some function (PK). As the particles decrease in size, while being repeatedly crushed between the jaws, the amount of material discharged for a given set increases. Rose and English related this to the set opening and the mean size of the particles that were discharged. Defining this relation as it can be written as

The capacity is then dependant on some function which may be written as (). Equations (4.16) and (4.17) must, therefore, be incorporated into the capacity equation. Expressing capacity as mass of crusher product produced per unit time, capacity can be written as

The bulk density of the packing will depend on the particle size distribution. The relation between PK and (PK) and and () is shown in Figure4.6. It is based on a maximum possible bulk density of 40%.

As the closed set size must be less than the feed size, () may be taken as equal to 1 for all practical purposes. The maximum capacity of production can be theoretically achieved at the critical speed of oscillation of the moving jaw. The method of determining the critical speed and maximum capacity is described in Section4.2.3

The capacity of a jaw crusher is given by the amount of crushed material passing the discharge opening per unit time. This is dependent on the area of the discharge opening, the properties of the rock, moisture, crusher throw, speed, nip angle, method of feeding and the amount of size reduction.

In order to calculate the capacity of crushers, Taggart [8] considered the size reduction, R80, as the reduction ratio of the 80% passing size of the feed, F80, and product, P80. This may be written as

Hersam [6] showed that at a fixed set and throw, a decrease in feed size reduced the reduction ratio and increased the tonnage capacity. A fraction of the crusher feed is usually smaller than the minimum crusher opening at the discharge end (undersize) and, therefore, passes through the crusher without any size reduction. Thus, as the feed size decreases, the amount actually crushed becomes significantly less than the total feed. The crusher feed rate can increase to maintain the same crushing rate. Taggart expressed the relationship between crusher capacity and reduction ratio in terms of a reduction ton or tonne, QR defined as

The reduction tonnage term is dependent on the properties of the material crushed so that for a given reduction ratio, the crusher capacity will vary for different materials. Taggart attempted to compensate for this by introducing the comparative reduction tonne, QRC, which is related to the reduction tonne by the expression

The comparative reduction tonne is a standard for comparison and applies for the crushing conditions of uniform full capacity feeding of dry thick bedded medium-hard limestone where K=1. The factor K is determined for different conditions and is a function of the material crushability (kC), moisture content (kM) and crusher feeding conditions (kF). K is expressed as

To evaluate K, the relative crushability factor, kC, of common rocks was considered and is given in Table4.2. In the table, the crushability of limestone is considered standard and taken as equal to 1.

The moisture factor, kM, has little effect on primary crushing capacities in jaw crushers and could be neglected. However when clay is present or the moisture content is high (up to 6%) sticking of fine ores on the operating faces of the jaws is promoted and will reduce the production rate. The moisture effect is more marked during secondary crushing, where a higher proportion of fines are present in the feed.

The feed factor kF, applies to the manner in which the crusher is fed, for example, manually fed intermittently or continuously by a conveyor belt system. In the latter case, the rate of feeding is more uniform. The following values for factor kF are generally accepted:

The reduction ratio of the operation is estimated from screen analysis of the feed and product. Where a screen analysis is not available, a rough estimate can be obtained if the relation between the cumulative mass percent passing (or retained) for different size fractions is assumed to be linear (Figure4.7).

Figure4.7 is a linear plot of the scalped and unscalped ores. The superimposed data points of a crusher product indicate the fair assumption of a linear representation. In the figure, a is the cumulative size distribution of the unscalped feed ore (assumed linear) and b is the cumulative size distribution of the scalped ore. xS is the aperture of the scalping screen and d1 and d2 are the corresponding sizes of the scalped and unscalped feed at x cumulative mass percentage. Taking x equal to 20% (as we are required to estimate 80% that is passing through), it can be seen by simple geometry that the ratio of the 80% passing size of the scalped feed to the 80% passing size of the unscalped feed is given by

Run of mine granite is passed through a grizzly (45.7cm) prior to crushing. The ore is to be broken down in a jaw crusher to pass through a 11.5cm screen. The undersize is scalped before feeding to the jaw crusher. Assuming the maximum feed rate is maintained at 30t/h and the shapes of feed and product are the same and the crusher set is 10cm, estimate the size of jaw crusher required and the production rate.

Substituting values, assuming cubic-shaped particles where the shape factor=1.7, we haveF80=0.81.745.7+0.210=64.15cmandP80=0.81.711.5=15.64cmR80=64.1515.64=4.10HenceQRC=22.744.100.64=145.4t/h

For a jaw crusher the thickness of the largest particle should not normally exceed 8085% of the gape. Assuming in this case the largest particle to be crushed is 85% of the gape, then the gape of the crusher should be=45.7/0.85=53.6cm and for a shape factor of 1.7, the width should be=45.7 1.7=78cm.

From the data given by Taggart (Figure4.8), a crusher of gape 53.6cm would have a comparative reduction tonnage of 436 t/h. The corresponding crushing capacity would beQT=4360.644.10=68.1t/hand is thus capable of handling the desired capacity of 22.74 t/h.

To determine the capacity of jaw and gyratory crushers, Broman [10] divided the crusher chamber into different sections and determined the volume of each section in terms of the angle that the moving jaw subtended with the vertical. Broman suggested that the capacity per stroke crushed in each section would be a function of the top surface and the height of the section. Referring to Figure4.9, if is the angle of nip between the crusher jaws and LT and LMAX are the throw and open side setting, respectively, then

Michaelson [8] expressed the jaw crusher capacity in terms of the gravity flow of a theoretical ribbon of rock through the open set of the crusher times a constant, k. For a rock of SG 2.65, Michaelsons equation is given as

For a set of crusher sizes and set openings, the calculations obtained from the work of Rose and English and others can be compared with data from equipment manufacturers. Figure4.10 shows a plot of the results. Assuming a value of SC of 1.0, the calculations show an overestimation of the capacity recommended by the manufacturers. As Rose and English pointed out, the calculation of throughput is very dependent on the value of SC for the ore being crushed. The diagram also indicates that the calculations drop to within the installed plant data for values of SC below 1.0. Most other calculation methods tend to estimate higher throughputs than the manufacturers recommend; hence, the crusher manufacturers should always be consulted.

The Values Used in the Calculation were 2.6 SG, (PK)=0.65, ()=1.0 and SC=0.51.0 (R&E); k=0.4 (Hersam); k=0.3 (Michaelson); k=1.5 (Broman) and =275rpm. The Max and Min Lines Represent the Crushers Nominal Operating Capacity Range.

Jaw crushers are heavy-duty machines and hence must be robustly constructed. The main frame is often made from cast iron or steel, connected with tie-bolts. It is commonly made in sections so that it can be transported underground for installation. Modern jaw crushers may have a main frame of welded mild steel plate.

The jaws are usually constructed from cast steel and fitted with replaceable liners, made from manganese steel, or Ni-hard, a Ni-Cr alloyed cast iron. Apart from reducing wear, hard liners are essential to minimize crushing energy consumption by reducing the deformation of the surface at each contact point. The jaw plates are bolted in sections for simple removal or periodic reversal to equalize wear. Cheek plates are fitted to the sides of the crushing chamber to protect the main frame from wear. These are also made from hard alloy steel and have similar lives to the jaw plates. The jaw plates may be smooth, but are often corrugated, the latter being preferred for hard, abrasive ores. Patterns on the working surface of the crushing members also influence capacity, especially at small settings. The corrugated profile is claimed to perform compound crushing by compression, tension, and shearing. Conventional smooth crushing plates tend to perform crushing by compression only, though irregular particles under compression loading might still break in tension. Since rocks are around 10 times weaker in tension than compression, power consumption and wear costs should be lower with corrugated profiles. Regardless, some type of pattern is desirable for the jaw plate surface in a jaw crusher, partly to reduce the risk of undesired large flakes easily slipping through the straight opening, and partly to reduce the contact surface when crushing flaky blocks. In several installations, a slight wave shape has proved successful. The angle between the jaws is usually less than 26, as the use of a larger angle causes particle to slip (i.e., not be nipped), which reduces capacity and increases wear.

In order to overcome problems of choking near the discharge of the crusher, which is possible if fines are present in the feed, curved plates are sometimes used. The lower end of the swing jaw is concave, whereas the opposite lower half of the fixed jaw is convex. This allows a more gradual reduction in size as the material nears the exit, minimizing the chance of packing. Less wear is also reported on the jaw plates, since the material is distributed over a larger area.

The speed of jaw crushers varies inversely with the size, and usually lies in the range of 100350rpm. The main criterion in determining the optimum speed is that particles must be given sufficient time to move down the crusher throat into a new position before being nipped again.

The throw (maximum amplitude of swing of the jaw) is determined by the type of material being crushed and is usually adjusted by changing the eccentric. It varies from 1 to 7cm depending on the machine size, and is highest for tough, plastic material and lowest for hard, brittle ore. The greater the throw the less danger of choking, as material is removed more quickly. This is offset by the fact that a large throw tends to produce more fines, which inhibits arrested crushing. Large throws also impart higher working stresses to the machine.

In all crushers, provision must be made for avoiding damage that could result from uncrushable material entering the chamber. Many jaw crushers are protected from such tramp material (often metal objects) by a weak line of rivets on one of the toggle plates, although automatic trip-out devices are now common. Certain designs incorporate automatic overload protection based on hydraulic cylinders between the fixed jaw and the frame. In the event of excessive pressure caused by an overload, the jaw is allowed to open, normal gap conditions being reasserted after clearance of the blockage. This allows a full crusher to be started under load (Anon., 1981). The use of guard magnets to remove tramp metal ahead of the crusher is also common (Chapters 2 and 13Chapter 2Chapter 13).

Jaw crushers are supplied in sizes up to 1,600mm (gape)1,900mm (width). For coarse crushing application (closed set~300mm), capacities range up to ca. 1,200th1. However, Lewis et al. (1976) estimated that the economic advantage of using a jaw crusher over a gyratory diminishes at crushing rates above 545th1, and above 725th1 jaw crushers cannot compete.

In hardening and martempering conditions austenitic manganese steel was free from carbides both at the grain boundaries and in the grains. Hence, the crusher jaws produced with austenitic manganese in these conditions eradicated brittle failure experienced in locally produced crusher jaws.

Hardening followed by tempering precipitated carbide at the grain boundaries and in the grains instead of reducing the residual stress associated with hardening. The volume fraction of these carbides, however, increased with tempering temperature.

In martempering conditions austenitic manganese steel had better plastic flows due to a decrease in overall thermal gradient and reduction in residual stresses associated with heat-treatment operations. This gave a better combination of hardness and toughness than austenitic manganese steel in hardening conditions used for the production of imported crusher jaws.

Srikanth [7] used a jaw crusher to create37m coal dust particles. Coal samples were obtained from coal mines in addition to some samples from the same source as Thakur's samples. They used a Microtrac Standard Range Analyzer (SRA) and Small Particle Analyser (SPA), which measured projected area (and hence diameter) using laser scattering and diffraction, respectively. The data were combined and plotted on a RosinRammler graph (discussed in Chapter 8). Their main findings were as follows:

Higher rank coals produced more total dust (<15m) and respirable dust (<7m). Semianthracite coal produced 3.7 times more total dust and 4.2 times more respirable dust compared with high-volatile bituminous coal.

The RosinRammler graph distribution parameter, n, was also rank dependent. The value for n was 0.68, 0.84, 0.90, and 0.95 for semianthracite, low-volatile coal, high-volatile bituminous coal, and subbituminous coals, respectively. This is similar to findings by Thakur (refer to Chapter 8 in the book).

A material is crushed in a Blake jaw crusher such that the average size of particle is reduced from 50 mm to 10 mm with the consumption of energy of 13.0 kW/(kg/s). What would be the consumption of energy needed to crush the same material of average size 75 mm to an average size of 25 mm:

The size range involved by be considered as that for coarse crushing and, because Kick's law more closely relates the energy required to effect elastic deformation before fracture occurs, this would be taken as given the more reliable result.

In an investigation by the U.S. Bureau of Mines(14), in which a drop weight type of crusher was used, it was found that the increase in surface was directly proportional to the input of energy and that the rate of application of the load was an important factor.

This conclusion was substantiated in a more recent investigation of the power consumption in a size reduction process which is reported in three papers by Kwong et al.(15), Adams et al.(16) and Johnson etal.(17). A sample of material was crushed by placing it in a cavity in a steel mortar, placing a steel plunger over the sample and dropping a steel ball of known weight on the plunger over the sample from a measured height. Any bouncing of the ball was prevented by three soft aluminium cushion wires under the mortar, and these wires were calibrated so that the energy absorbed by the system could be determined from their deformation. Losses in the plunger and ball were assumed to be proportional to the energy absorbed by the wires, and the energy actually used for size reduction was then obtained as the difference between the energy of the ball on striking the plunger and the energy absorbed. Surfaces were measured by a water or air permeability method or by gas adsorption. The latter method gave a value approximately double that obtained from the former indicating that, in these experiments, the internal surface was approximately the same as the external surface. The experimental results showed that, provided the new surface did not exceed about 40 m2/kg, the new surface produced was directly proportional to the energy input. For a given energy input the new surface produced was independent of:

Between 30 and 50 per cent of the energy of the ball on impact was absorbed by the material, although no indication was obtained of how this was utilised. An extension of the range of the experiments, in which up to 120 m2 of new surface was produced per kilogram of material, showed that the linear relationship between energy and new surface no longer held rigidly. In further tests in which the crushing was effected slowly, using a hydraulic press, it was found, however, that the linear relationship still held for the larger increases in surface.

In order to determine the efficiency of the surface production process, tests were carried out with sodium chloride and it was found that 90 J was required to produce 1 m2 of new surface. As the theoretical value of the surface energy of sodium chloride is only 0.08 J/m2, the efficiency of the process is about 0.1 per cent. Zeleny and Piret(18) have reported calorimetric studies on the crushing of glass and quartz. It was found that a fairly constant energy was required of 77 J/m2 of new surface created, compared with a surface-energy value of less than 5 J/m2. In some cases over 50 per cent of the energy supplied was used to produce plastic deformation of the steel crusher surfaces.

The apparent efficiency of the size reduction operation depends on the type of equipment used. Thus, for instance, a ball mill is rather less efficient than a drop weight type of crusher because of the ineffective collisions that take place in the ball mill.

Further work(5) on the crushing of quartz showed that more surface was created per unit of energy with single particles than with a collection of particles. This appears to be attributable to the fact that the crushing strength of apparently identical particles may vary by a factor as large as 20, and it is necessary to provide a sufficient energy concentration to crush the strongest particle. Some recent developments, including research and mathematical modelling, are described by Prasher(6).

The main sources of RA are either from construction and ready mixed concrete sites, demolition sites or from roads. The demolition sites produce a heterogeneous material, whereas ready mixed concrete or prefabricated concrete plants produce a more homogeneous material. RAs are mainly produced in fixed crushing plant around big cities where CDWs are available. However, for roads and to reduce transportation cost, mobile crushing installations are used.

The materiel for RA manufacturing does not differ from that of producing NA in quarries. However, it should be more robust to resist wear, and it handles large blocks of up to 1m. The main difference is that RAs need the elimination of contaminants such as wood, joint sealants, plastics, and steel which should be removed with blast of air for light materials and electro-magnets for steel. The materials are first separated from other undesired materials then treated by washing and air to take out contamination. The quality and grading of aggregates depend on the choice of the crusher type.

Jaw crusher: The material is crushed between a fixed jaw and a mobile jaw. The feed is subjected to repeated pressure as it passes downwards and is progressively reduced in size until it is small enough to pass out of the crushing chamber. This crusher produces less fines but the aggregates have a more elongated form.

Hammer (impact) crusher: The feed is fragmented by kinetic energy introduced by a rotating mass (the rotor) which projects the material against a fixed surface causing it to shatter causing further particle size reduction. This crusher produces more rounded shape.

However, the gyratory crusher is sensitive to jamming if it is fed with a sticky or moist product loaded with fines. This inconvenience is less sensitive with a single-effect jaw crusher because mutual sliding of grinding surfaces promotes the release of a product that adheres to surfaces.

The profile of active surfaces could be curved and studied as a function of the product in a way to allow for work performed at a constant volume and, as a result, a higher reduction ratio that could reach 20. Inversely, at a given reduction ratio, effective streamlining could increase the capacity by 30%.

The theoretical work of Rose and English [11] to determine the capacity of jaw crushers is also applicable to gyratory crushers. According to Rose and English, Equation (5.4) can be used to determine the capacity, Q, of gyratory crushers:

Capacities of gyratory crushers of different sizes and operation variables are published by various manufacturers. The suppliers have their own specifications which should be consulted. As a typical example, gyratory crusher capacities of some crushers are shown in Tables5.5 and 5.6.

About 100g heavy metal contaminated construction and demolition (C&D) waste is weighed and preliminarily crushed by a jaw crusher. Then the crushed C&D waste is mixed well and reduced by quartering twice. After that, the sample is dried at 100C for 1h. An electromagnetic crusher is used as a fine crushing for about 46min. Crushed sample is placed in a polypropylene screw-cap plastic bottles for storage.

Teflon crucibles used for digestion should be soaked in 1:1 nitric acid for 12h, wash with distilled water, and dry for later use. Volumetric flasks should be soaked in 1:1 nitric acid for 12h and washed with distilled water.

Before digestion, 0.10000.3000g of C&D waste powder is accurately weighed and evenly spread on the bottom of Teflon crucibles. Then they are placed in oven and dried for 2h at 120C together till constant weight. Aqua regia (18mL) (hydrochloric acid:nitric acid=3:1) is added, and 2mL 40% hydrofluoric acid is added 10min later. The crucibles with lids on are placed on an electric heating plate at 180C and heated till the solid waste is dissolved. Then, 30mL deionized water is added and the heating should be continuously maintained till the solution is vaporized to 23mL. Transfer the liquid to a 25mL plastic volumetric flask after it is cooled down, in which the volumetric flask should be washed with 1% nitric acid solution three times. Add deionized water to a certain volume and filter through 0.22m membrane. Place the solution at 4C for analysis.

Various types of rock fracture occur at different loading rates. For example, rock destruction by a boring machine, a jaw or cone crusher, and a grinding roll machine are within the extent of low loading rates, often called quasistatic loading condition. On the contrary, rock fracture in percussive drilling and blasting happens under high loading rates, usually named dynamic loading condition. This chapter presents loading rate effects on rock strengths, rock fracture toughness, rock fragmentation, energy partitioning, and energy efficiency. Finally, some of engineering applications of loading rate effects are discussed.

jaw models & literature | lippmann-milwaukee

jaw models & literature | lippmann-milwaukee

Lippmann jaw crushers are fabricated with an extra-heavily ribbed steel plate construction to provide maximum strength and durability while in operation. Frames are stress relieved before machining and after welding to ensure the highest quality product. Through finite element analysis, Lippmann engineers have been able to provide jaw crushers with maximum strength at all stress points; promoting trouble-free operation.

built to connect - astec

built to connect - astec

The site navigation utilizes arrow, enter, escape, and space bar key commands. Left and right arrows move across top level links and expand / close menus in sub levels. Up and Down arrows will open main level menus and toggle through sub tier links. Enter and space open menus and escape closes them as well. Tab will move on to the next part of the site rather than go through menu items.

manganese steel, chrome steel , alloy steel foundry | qiming casting

manganese steel, chrome steel , alloy steel foundry | qiming casting

Qiming Casting is a dynamically growing company with many years of experience in production and supply Crusher Wear Parts,Shredder Wear Parts,Mill Liners,Apron Feeder Pans,Electric Rope Shovel Parts, andCrusher Spare Parts. We supply wear parts to the USA, Canada, Europe, Australia, Africa, etc.

Qiming Casting designs and manufactures world-class wear part solutions that last longer than OEM parts. Using the latest technology, we design and cast our products from the best quality alloys available, and use custom heat treatments to ensure the durability of our parts. Our huge product range, customer service excellence, and our ability to deliver on time, every time is the result of 30+ years of operation and industry-based knowledge we know what you need, so we deliver it.

Qiming Casting specializes in manufacturing crusher wear parts, which include jaw crusher wear parts, cone crusher wear parts, hammer mill wear parts, gyratory crusher wear parts, VSI crusher wear parts, impact crusher wear parts.

Qiming Casting supplies all kinds of brands of crusher spare parts, which include jaw crusher spare parts, cone crusher spare parts, gyratory crusher spare parts, VSI crusher spare parts, impact crusher spare parts and other crusher spare parts.

Qiming Casting manufactures ASTM A128 standard manganese steel wear parts for quarrying, mining, and cement wear parts, which products include cone crusher liners, jaw crusher liners, mill liner, apron feeder pans, hammer mill hammer, and others.

Qiming Casting manufactures ASTM A532M standard chromium steel wear parts for quarrying, mining, and cement wear parts, which products include impact crusher blow bars, impact plates, feed tube, VSI wear parts, mill liners, distributor plate, and other wear parts.

Qiming Casting specialized in manufacturing low-alloy steel and high-alloy steel parts. Material includes Cr-Mo alloy steel, 30CrNiMo alloy steel, heat-resistant alloy steel. Products include alloy mill liners, alloy hammer, heat-resistant liners, and other alloy steel liners.

Qiming Casting has a rich experience in cast manganese steel, chromium steel, and alloy steel wear parts for over 30 years. There are more than 12000 tons of wear parts are sent to European, North America, South America, and Australia markets.

Based on rich experience, our engineers also help our customers to design suitable material for different working conditions. On the other hand, Qiming Castings engineers had invented new materials to prolong wear parts span life, such as TIC inserts wear parts, alloy steel crusher liner

Our company has two water glass sand production lines, a V-method casting production lines, an EPC production line, a machine shop; 2 sets 5T electric furnace, 2 sets 3T intermediate frequency electric furnace, 2 sets 1T intermediate frequency electric furnace, 5 sets heat treatment furnace trolley,2000 CBM heat treatment pool, The maximum casting weight:12 tons, Registered capital: Fifteen million dollars, The annual production capacity: 12,000 tons

Although there are only 168 workers in Qiming Casting, however, there are 8 rich experience foundry engineers and 10 quality control personnel. The high percentage of engineers helps us to keep a high-quality standard.

Qiming Casting is one of the largest manganese steel, chromium steel, and alloy steel foundry in China. Products include crusher wear parts, Crusher spare parts, mill liners, shredder wear parts, apron feeder pans, and electric rope shovel parts.

j50 jaw crusher - mccloskey international

j50 jaw crusher - mccloskey international

With 1270mm (50) x 735mm (29) single toggle jaw (the widest jaw in its class), the J50 places McCloskey International at the fore of portable crushing machinery. Maximum productivity is delivered through the enhancements to the jaw box including heavier flywheels and optimization for all crushing applications.The J50s jaw speed leads to better reduction and material being processed faster through the crushing chamber.

McCloskey International has a proven reputation for designing quality, best-in-class equipment and the J50 Crusher brings even more power and productivity together in one machine.With its class-leading throughput and capacity and the largest stockpile height in its category the J50 crusher continues to push the boundaries of industry performance.

Founded by Matthew Berrett,MJB Excavations & Plant Hire Ltdare a family owned business, going from strength to strength, established as one of Yorkshires leading excavation and plant hire specialists. Having

Get in Touch with Mechanic
Related Products
Recent Posts
  1. second hand zenith crushers

  2. how to use marble edging machine

  3. high quality stone stone crusher in jakarta

  4. different crushing value

  5. cheap used jaw rock crusher price usa

  6. nantes efficient environmental bentonite stone crushing machine price

  7. high-efficiency quarry crushing machine rock stone processing plant pe 900 1200 jaw crusher

  8. medium carbon black fine crusher in tanzania

  9. cairo low price large chrome ore rock crusher

  10. mining machine yip manufacturers in germany

  11. xzs vibrating screener in india

  12. jaw crusher agent orissa

  13. histry gold ore stamp mills philippines

  14. mining machinery manufacturing e perts cone crushers

  15. gravel crusher plant

  16. 960 jaw crusher

  17. montpellier high quality large carbon black system sand production line

  18. mobile crusher guarding

  19. cone crusher olx

  20. spiral garden