ore, mineral & slag crusher | stedman machine company

ore, mineral & slag crusher | stedman machine company

Stedman impact crushers, mills, and grinders are used in nearly every mineral, ore, and mining application. Whether you are processing iron ore, coal, rock, salt, wood chips, or clay to name a few we have your solution to size reduction.

With a wide range of equipment that performs mineral and ore crushing, size reduction, beneficiation, lump breaking, grinding, and mixing, our product line is designed to be reliable, versatile, and right for your application.

We offer custom designed solutions for your ore and mineral processing needsStedman has the industry leading Testing and Toll Processing Facilities available. With over 180 years of experience, many materials already have test reports on file. Contact us so we can help you select just the right equipment for your job no guessing.To learn more about what to expect from testing,read this articlethat ran in POWDER BULK ENGINEERING magazine.

Test Before You Buy! Why Test? Stedman's testing facilities provide real-world conditions to view your materials being processed. Test out a range of different size reduction methods, saving you both time and money when selecting the proper size reduction method. Learn More

Stedman's testing facilities provide real-world conditions to view your materials being processed. Test out a range of different size reduction methods, saving you both time and money when selecting the proper size reduction method.

Stedman Machine Company is involved in professional organizations to better understand the knowledge and skills needed to serve our customers in the Mineral & Mining Industry. These memberships give us better insight into the standards of the industry, updates to new and more efficient technologies and to the wants and needs of our customers. With the information obtained from our memberships, we can safely maintain the highest level of performance. Mineral & Mining associations include:

mineral material crusher, mineral material crushing plant - all industrial manufacturers - videos

mineral material crusher, mineral material crushing plant - all industrial manufacturers - videos

{{#each product.specData:i}} {{name}}: {{value}} {{#i!=(product.specData.length-1)}} {{/end}} {{/each}}

{{#each product.specData:i}} {{name}}: {{value}} {{#i!=(product.specData.length-1)}} {{/end}} {{/each}}

... or very hard brittle materials even hardest ferrous alloys! The FRITSCH Jaw Crusher PULVERISETTE 1 premium line is ideal for a max. feed size of 95 mm and a max. continuous throughput of up to 250 ...

Liming Mobile Primary Jaw Crusher KE750-1 is a mobile crushing equipment for coarse crushing. The whole machine includes four systems: feeding, screening, conveying and crushing. The crushing ability is strong, and the ...

PE600900 jaw crusher is used in the first process of coarse and medium crushing various minerals and rocks. The advantages of high efficiency, strong crushing capacity and low investment cost make jaw ...

PE7501060 jaw crusher is used in the first process of coarse and medium crushing various minerals and rocks. The advantages of high efficiency, strong crushing capacity and low investment cost make jaw ...

... mobile type closed circuit crushing plant that is suitable for especially limestone and other types of stones with hardness level is soft or medium. The mobile crusher PRO-70 is the ideal machine for ...

... Motor Power: 210 kW PRO 90 is a combination of : -Rock Feeding Bunker -Vibrating Grizlly Feeder -Turbo Impact Crusher -High Stroke Type Vibrating Screen -Folding type feeding, feedback and stock conveyor ...

FABO PRO 100 is a mobile type & closed circuit crushing plant that is suitable for especially limestone and other types of stones whose hardness level is soft or medium. TECHNICAL SPECIFICATIONS -Production Capacity: ...

Jaw crushers reduce large rocks or ore by means of compression. Mechanical pressure is applied using the crushers two jaws; one is fixed while the other reciprocates. There are also primary and secondary ...

Primary impact crushers are preferred for their high performance and high reduction ratios in crushing soft-character substances like gypsum and limestone. Due to the different principle of crushing these materials, ...

Designed for crushing soft and medium-hard materials with close grain distribution and good cubical shape ratios, tertiary impact crushers are an excellent solution in the production of fine aggregates ...

... Jaw crushers are one of the most commonly preferred crushers due to their ability to crush all kinds of materials of any hardness, as well as their low-cost operation and easy maintenance USED ...

... Shaft Impact Crusher can produce the best-shaped aggregate for asphalt and concrete mix. APPLICATION Construction waste recycling, decoration waste recycling, aggregate processing, mineral rock crushing, ...

crusher - an overview | sciencedirect topics

crusher - an overview | sciencedirect topics

Roll crushers are generally not used as primary crushers for hard ores. Even for softer ores, like chalcocite and chalcopyrite they have been used as secondary crushers. Choke feeding is not advisable as it tends to produce particles of irregular size. Both open and closed circuit crushing are employed. For close circuit the product is screened with a mesh size much less than the set.

Fig. 6.4 is a typical set up where ore crushed in primary and secondary crushers are further reduced in size by a rough roll crusher in open circuit followed by finer size reduction in a closed circuit by roll crusher. Such circuits are chosen as the feed size to standard roll crushers normally do not exceed 50mm.

Cone crushers were originally designed and developed by Symons around 1920 and therefore are often described as Symons cone crushers. As the mechanism of crushing in these crushers are similar to gyratory crushers their designs are similar, but in this case the spindle is supported at the bottom of the gyrating cone instead of being suspended as in larger gyratory crushers. Fig. 5.3 is a schematic diagram of a cone crusher. The breaking head gyrates inside an inverted truncated cone. These crushers are designed so that the head to depth ratio is larger than the standard gyratory crusher and the cone angles are much flatter and the slope of the mantle and the concaves are parallel to each other. The flatter cone angles helps to retain the particles longer between the crushing surfaces and therefore produce much finer particles. To prevent damage to the crushing surfaces, the concave or shell of the crushers are held in place by strong springs or hydraulics which yield to permit uncrushable tramp material to pass through.

The secondary crushers are designated as Standard cone crushers having stepped liners and tertiary Short Head cone crushers, which have smoother crushing faces and steeper cone angles of the breaking head. The approximate distance of the annular space at the discharge end designates the size of the cone crushers. A brief summary of the design characteristics is given in Table 5.4 for crusher operation in open circuit and closed circuit situations.

The Standard cone crushers are for normal use. The Short Head cone crushers are designed for tertiary or quaternary crushing where finer product is required. These crushers are invariably operated in closed circuit. The final product sizes are fine, medium or coarse depending on the closed set spacing, the configuration of the crushing chamber and classifier performance, which is always installed in parallel.

For finer product sizes, i.e. less than 6mm, special cone crushers known as Gyradisc crushers are available. The operation is similar to the standard cone crushers except that the size reduction is caused more by attrition than by impact, [5]. The reduction ratio is around 8:1 and as the product size is relatively small the feed size is limited to less than 50mm with a nip angle between 25 and 30. The Gyradisc crushers have head diameters from around 900-2100mm. These crushers are always operated in choke feed conditions. The feed size is less than 50mm and therefore the product size is usually less than 6-9mm.

Crushing is accomplished by compression of the ore against a rigid surface or by impact against a surface in a rigidly constrained motion path. Crushing is usually a dry process and carried out on ROM ore in succession of two or three stages, namely, by (1) primary, (2) secondary, and (3) tertiary crushers.

Primary crushers are heavy-duty rugged machines used to crush ROM ore of () 1.5m size. These large-sized ores are reduced at the primary crushing stage for an output product dimension of 1020cm. The common primary crushers are of jaw and gyratory types.

The jaw crusher reduces the size of large rocks by dropping them into a V-shaped mouth at the top of the crusher chamber. This is created between one fixed rigid jaw and a pivoting swing jaw set at acute angles to each other. Compression is created by forcing the rock against the stationary plate in the crushing chamber as shown in Fig.13.9. The opening at the bottom of the jaw plates is adjustable to the desired aperture for product size. The rocks remain in between the jaws until they are small enough to be set free through this opening for further size reduction by feeding to the secondary crusher.

The type of jaw crusher depends on input feed and output product size, rock/ore strength, volume of operation, cost, and other related parameters. Heavy-duty primary jaw crushers are installed underground for uniform size reduction before transferring the ore to the main centralized hoisting system. Medium-duty jaw crushers are useful in underground mines with low production (Fig.13.10) and in process plants. Small-sized jaw crushers (refer to Fig.7.32) are installed in laboratories for the preparation of representative samples for chemical analysis.

The gyratory crusher consists of a long, conical, hard steel crushing element suspended from the top. It rotates and sweeps out in a conical path within the round, hard, fixed crushing chamber (Fig.13.11). The maximum crushing action is created by closing the gap between the hard crushing surface attached to the spindle and the concave fixed liners mounted on the main frame of the crusher. The gap opens and closes by an eccentric drive on the bottom of the spindle that causes the central vertical spindle to gyrate.

The secondary crusher is mainly used to reclaim the primary crusher product. The crushed material, which is around 15cm in diameter obtained from the ore storage, is disposed as the final crusher product. The size is usually between 0.5 and 2cm in diameter so that it is suitable for grinding. Secondary crushers are comparatively lighter in weight and smaller in size. They generally operate with dry clean feed devoid of harmful elements like metal splinters, wood, clay, etc. separated during primary crushing. The common secondary crushers are cone, roll, and impact types.

The cone crusher (Fig.13.12) is very similar to the gyratory type, except that it has a much shorter spindle with a larger-diameter crushing surface relative to its vertical dimension. The spindle is not suspended as in the gyratory crusher. The eccentric motion of the inner crushing cone is similar to that of the gyratory crusher.

The roll crusher consists of a pair of horizontal cylindrical manganese steel spring rolls (Fig.13.14), which rotate in opposite directions. The falling feed material is squeezed and crushed between the rollers. The final product passes through the discharge point. This type of crusher is used in secondary or tertiary crushing applications. Advanced roll crushers are designed with one rotating cylinder that rotates toward a fix plate or rollers with differing diameters and speeds. It improves the liberation of minerals in the crushed product. Roll crushers are very often used in limestone, coal, phosphate, chalk, and other friable soft ores.

The impact crusher (Fig.13.15) employs high-speed impact or sharp blows to the free-falling feed rather than compression or abrasion. It utilizes hinged or fixed heavy metal hammers (hammer mill) or bars attached to the edges of horizontal rotating discs. The hammers, bars, and discs are made of manganese steel or cast iron containing chromium carbide. The hammers repeatedly strike the material to be crushed against a rugged solid surface of the crushing chamber breaking the particles to uniform size. The final fine products drop down through the discharge grate, while the oversized particles are swept around for another crushing cycle until they are fine enough to fall through the discharge gate. Impact crushers are widely used in stone quarrying industry for making chips as road and building material. These crushers are normally employed for secondary or tertiary crushing.

If size reduction is not completed after secondary crushing because of extra-hard ore or in special cases where it is important to minimize the production of fines, tertiary recrushing is recommended using secondary crushers in a close circuit. The screen overflow of the secondary crusher is collected in a bin (Fig.13.16) and transferred to the tertiary crusher through a conveyer belt in close circuit.

Primary jaw crushers typically operate in open circuit under dry conditions. Depending on the size reduction required, the primary jaw crushers are followed by secondary and tertiary crushing. The last crusher in the line of operation operates in closed circuit. That is, the crushed product is screened and the oversize returned to the crusher for further size reduction while the undersize is accepted as the product. Flow sheets showing two such set-ups are shown in Figs. 3.1 and 3.2.

Jaw crushers are installed underground in mines as well as on the surface. When used underground, jaw crushers are commonly used in open circuit. This is followed by further size reduction in crushers located on the surface.

When the run of mine product is conveyed directly from the mine to the crusher, the feed to the primary crusher passes under a magnet to remove tramp steel collected during the mining operation. A grizzly screen is placed between the magnet and the receiving hopper of the crusher to scalp (remove) boulders larger than the size of the gape. Some mines deliver product direct to storage bins or stockpiles, which then feed the crushers mechanically by apron feeders, Ross feeders or similar devices to regulate the feed rate to the crusher. Alternately haulage trucks, front-end loaders, bottom discharge railroad cars or tipping wagons are used. In such cases, the feed rate to the crusher is intermittent which is a situation generally avoided. In such cases of intermittent feed, storage areas are installed and the feed rate regulated by bulldozers, front loaders or bin or stockpile hoppers and feeders. It is necessary that the feed to jaw crushers be carefully designed to balance with the throughput rate of the crusher. When the feed rate is regulated to keep the receiving hopper of the crusher full at all times so that the volume rate of rock entering any point in the crusher is greater than the rate of rock leaving, it is referred to as choke feeding. During choke feeding the crushing action takes place between the jaw plates and particles as well as by inter-particle compression. Choke feeding necessarily produces more fines and requires careful feed control. For mineral liberation, choked feeding is desirable.

When installed above ground, the object of the crushing circuit is to crush the ore to achieve the required size for down stream use. In some industries, for example, iron ore or coal, where a specific product size is required (iron ore 30+6mm), careful choice of jaw settings and screen sizes are required to produce the minimum amount of fines (i.e. 6mm) and maximum the amount of lump ore within the specified size range. For hard mineral bearing rocks like gold or nickel ores where liberation of minerals from the host rock is the main objective, further stages of size reduction are required.

A gold ore was crushed in a secondary crusher and screened dry on an 1180micron square aperture screen. The screen was constructed with 0.12mm diameter uniform stainless steel wire. The size analysis of the feed, oversize and undersize streams are given in the following table. The gold content in the feed, undersize and oversize streams were; 5ppm, 1.5ppm and 7ppm respectively. Calculate:

The self tuning control algorithm has been developed and applied on crusher circuits and flotation circuits [22-24] where PID controllers seem to be less effective due to immeasurable change in parameters like the hardness of the ore and wear in crusher linings. STC is applicable to non-linear time varying systems. It however permits the inclusion of feed forward compensation when a disturbance can be measured at different times. The STC control system is therefore attractive. The basis of the system is:

The disadvantage of the set up is that it is not very stable and therefore in the control model a balance has to be selected between stability and performance. A control law is adopted. It includes a cost function CF, and penalty on control action. The control law has been defined as:

A block diagram showing the self tuning set-up is illustrated in Fig. 18.27. The disadvantage of STC controllers is that they are less stable and therefore in its application a balance has to be derived between stability and performance.

Bone recycling is a simple process where useful products can be extracted. Minerals such as calcium powder for animal; feed are extracted from the bone itself. The base material for cosmetics and some detergent manufacturing needs are extracted from the bone marrow.

The bone recycling process passes through seven stages starting from crushing and ending with packing. Figure 13.14 gives a schematic diagram showing the bone recycling process which goes through the following steps:

Following the standard procedures in the Beijing SHRIMP Center, zircons were separated using a jaw crusher, disc mill, panning, and a magnetic separator, followed by handpicking using a binocular microscope. The grains were mounted together with the standard zircon TEM (417Ma, Black etal., 2003) and then polished to expose the internal structure of the zircons. Cathodoluminescence (CL) imaging was conducted using a Hitachi SEM S-3000N equipped with a Gatan Chroma CL detector in the Beijing SHRIMP Center. The zircon analysis was performed using the SHRIMP II also in the Beijing SHRIMP Centre. The analytical procedures and conditions were similar to those described by Williams (1998). Analytical spots with 25m diameter were bombarded by a 3nA, 10kV O2 primary ion beam to sputter secondary ions. Five scans were performed on every analysis, and the mass resolution was 5000 (at 1%). M257 standard zircon (561.3Ma, U=840ppm) was used as the reference value for the U concentration, and TEM standard zircons were used for Pb/U ratio correction (Black etal., 2003). Common Pb was corrected using the measured 204Pb. Data processing was performed using the SQUID/Isoplot programs (Ludwig, 2001a,b). Errors for individual analyses are at 1, but the errors for weighted average ages are at 2.

A stockpile can be used to blend ore from different sources. This is useful for flotation circuits where fluctuations ingrade can change the mass balance and circulating loads around the plant. Blending can also be done on the ROMpad.

The lowest cost alternative is to have no surge at all, but rather to have a crushing plant on line. This is workable for small-scale plant with single-stage jaw crushers as the availability of these simple plant is very high provided control over ROM size is maintained.

The second alternative is to use a small live surge bin after the primary crusher with a secondary reclaim feeder. Crushed ore feeds this bin continuously and the bin overflows to a small conveyor feeding a dead stockpile. In the event of a primary crusher failure, the crusher loader is used to reclaim the stockpile via the surge bin, which doubles as an emergency hopper.

For coarse ore, the next alternative is a coarse ore stockpile. Stockpiles of this type are generally 1525% live and require a tunnel (concrete or Armco) and a number of reclaim feeders to feed the milling circuit.

Multi-stage crushing circuits usually require surge capacity as the availability of each unit process is cumulative. A fine-ore bin is usually required. Smaller bins are usually fabricated from steel as this is cheaper. Live capacity of bins is higher than stockpiles but they also require a reclaim tunnel and feeders.

Get in Touch with Mechanic
Related Products
Recent Posts
  1. impact lighting

  2. jaw crusher partscone crusher partsball mill partsimpact

  3. impact crusher metso

  4. screen machine 4043t impact crusher

  5. jaw crusher and impact

  6. what is environmental impact of crushed rock

  7. impact crusher design and illustration

  8. impact crusher x pickle

  9. impact quick test

  10. italy medium ilmenite impact crusher price

  11. roll crusher process diagram

  12. tangible benefits small chrome ore rock crusher manufacturer in johor bahru

  13. african stone processing

  14. gold refining machine manufacturers in tamilnadu

  15. belgium economic gangue stone crushing machine

  16. cone crusher dust ring seal china

  17. medium copper mine agitation tank in southeast asia

  18. jaw crusher for rock indonesia

  19. serpentine magnetic separation

  20. medium copper mine coal mill in firenze