rod mills

rod mills

The Steel Head Rod Mill(sometimes call a bar mill)gives the ore dressing engineer a very wide choice in grinding design. He can easily secure a standard Steel Head Rod Mill suited to his particular problem. The successful operation of any grinding unit is largely dependent on the method of removing the ground pulp. The Steel Head Rod Mill is available with five types of discharge trunnions and each type trunnion is available in small, medium, or large diameter. The types of Rod Mill discharge trunnions are:

The superiority of the Steel Head Rod Mill is due to the all-steel construction. The trunnions are an integral part of the cast steel heads and are machined with the axis of the mill. The mill heads are insured against breakage due to the high tensile strength of cast steel as compared to that of the cast iron head found on the ordinary rod mill. Trunnion Bearings are made of high-grade nickel babbitt, dovetailed into the casting. Ball and socket bearings can be furnished if desired.

Head and shell liners for Steel Head Rod Mills are available in Decolloy (a chrome-nickel alloy), hard iron, electric steel, molychrome steel, and manganese steel. The heads have a conical shaped head liner construction, both on the feed and discharge ends, so that there is ample room for the feed from the trunnion helical conveyor discharge to enter the mill betweenthe rods and head liners on the feed end of the mill. Drive gears are furnished either in cast tooth spur gear and pinion or cut tooth spur gear and pinion. The gears are furnished as standard on the discharge end of the mill, out of the way of the classifier return feed, but can be furnished at the mill feed end by request. Drives may be obtained according to the customers specifications.

The following table clearly illustrates why Steel Head Rod Mills have greater capacity than other mills. This is due to the fact that the diameters are measured inside the liners, while other mills measure their diameter inside the shell.

Rod Mills may be considered either fine crushers or coarse grinding equipment. They are capable of taking as large as 2 feed and making a product as fine as 35-48 mesh. Of particular advantage is their adaptability to handling wet sticky ores, which normally would cause difficulty in crushing operations. Under wet grinding conditions of course the problem of dust is eliminated.

The grinding action of a rod mill is line contact. As material travels from the feed end to the discharge end it is subjected to crushing forces inflicted by the grinding rods. The rods both tumble in essentially a parallel alignment and also spin, thus simulating the crushing and grinding action obtained from a series of roll crushers. The large feed tends to spread the rods at the feed end which imparts still an additional action which may be termed scissoring. As a result of this spreading the rods tend to work on the larger particles and thereby produce a minimum amount of extremely fine material.

The Rod Mill encourages the use of a thick pulp coating both the liners and the rods, thus minimizing steel consumption. Continuous movement of the pulp through the rod mass eliminates the possibility of short circuiting any material. The discharge end of the Rod Mill is virtually open and larger in diameter than the feed end, providing a steep gradient of material flow through the mill. This is described in more detail on pages 20 and 21.

Normally Rod Mills are furnished of the two trunnion design. For special applications they may be furnished of the tire trunnion or two- tire construction. These mills can be equipped with any type of feeder and type of drive, discussed separately in this catalog.

The above tables list some of the most common Open End Rod Mill sizes. Capacities are based on medium hard ore with mill operating in closed circuit under wet grinding conditions at speeds indicated. For dry grinding, speeds and power are reduced and capacities drop 30 to 50%.

The End Peripheral Discharge Rod Mill is designed to produce a minimum amount of fines when grinding either wet or dry. Material to be ground enters through a standard trunnion and is discharged through port openings equally spaced around the mill periphery. These ports are in a separate ring placed between the shell and the discharge head.

The construction of the end peripheral discharge mill emphasizes the principle of grinding. Due to the steep gradient between the point of entry and the point of discharge the pulp flows rapidly through the mill providing a fast change of mill content with a relatively small amount of pulp within the grinding chamber.

The sloping or conical shaped feed head proves ample space for a feed pocket to accommodate large quantities of material and assure their entrance into the grinding rods. Any type of feeder listed on pages 22 and 23 can be furnished for these mills; however, since the mills are not usually operated in closed circuit grinding, the drum or spout feeder is normally preferred.

No other type of mill is so well adapted to dry grinding materials to -4 or -8 mesh in single pass with the production of a minimum amount of fines. A major factor in dry grinding is the rapid removal of finished material to prevent cushioning of the rods. This is accomplished in the End Peripheral Discharge Rod Mill.

The free discharge feature permits the grinding of material having a higher moisture content than with other types of rod or ball mills. Our Peripheral Discharge Mills have found wide application in grinding coke and friable non-metallics, material for glass, pyroborates, as well as gravel to produce sand. Another application is for grinding and mixing sand lime brick materials. The rod action gives a thorough mixture while grinding of the hydrated lime and sand.

For specifications of End Peripheral Discharge Rod Mills use table of standard open end rod mills given on pages 24 and 25. The capacity of the end peripheral discharge rod mill is slightly higher than shown for the Open End Rod Mills.

The CPD (Center Peripheral Discharge) Rod Mill has been developed to produce sand to meet U. S. Government or State specifications. It has also found application in grinding friable non-metallics, and industrial materials and ores which tend to slime excessively. Another application is in the field of abrasion milling on ores such as found on the Mesabi Iron Range. In this latter application true grinding is not desired, but more of a surface scrubbing of the individual particles.

Again with this construction grinding may be done either wet or dry. In this design, however, feed enters both ends by means of feeders and is discharged at the center through rectangular discharge ports equally spaced around the mill periphery. The center discharge openings are generally contained in a separate ring placed between shell halves. The ground material is discharged and directed to either side or directly under the mill by the use of a discharge ring housing.

In standard rod-milling it will be found that rods spread apart at the feed end in the amount of the maximum size of feed entering the mill. In the center peripheral discharge mill the rods are spread at both ends and parallel throughout the length of the mill. This feature results in more space between the rods and thereby lessens the amount of fines produced. Furthermore, fines are also diminished because the material moves rapidly through the mill due to the steep gradient of travel and the distance of travel is reduced by half. Similarly time of contact with the grinding media is reduced by half.

Another center peripheral discharge advantage is that a cubical shaped particle is produced. Maintenance is negligible and grinding media is relatively inexpensive. Other types of sand manufacturing equipment lose efficiency with wear and require excessive maintenance. This loss of efficiency increases rapidly as hardness of feed increases. The Center Peripheral Discharge Rod Mill can be easily maintained at peak operating efficiency by the periodical addition of rods. CPD Rod Mills give a wide range of flexibility to sand plant operation. By changing the rate of feed, pulp dilution (wet grinding), and discharge port area it is possible to produce and blend sand of virtually any fineness modulus and maintain it within Government specifications.

Unlike many crushers or grinders the CPD Mill can easily handle wet or sticky material. When grinding wet, the dust nuisance is completely eliminated. For dry grinding applications the mill is furnished with a dust proof discharge housing.

Various items must be considered in computing the cost of producing manufactured sand. These include wear on the constituent parts, power consumption, lubrication, labor and general maintenance. Maintenance of the center peripheral discharge mill is definitely much lower than that of any other sand manufacturing machine. The greater portion of the wear which takes place is on the inexpensive high carbon steel rods. Field installations show an average of less than 1 # per ton of sand ground as rod consumption, and from 0.08# to 0.10# per ton of sand ground as the steel liner wear. The overall cost of mill operation, exclusive of amortization, is generally less than 30c per ton (year 1958).

Every possible operating convenience has been incorporated in the center peripheral discharge mill design. On most sizes the trunnions are carried in large lead bronze bushed bearings. The interior of the mill is readily accessible through these large trunnion openings. The peripheral ring housing is furnished with a door for inspection and another lower door to facilitate sampling of the mill discharge. Covers for the discharge ports are furnished allowing any variation in discharge area which might be desired.

Given below are approximate capacities for several sizes of the center peripheral discharge mills. Such capacities are expressed in dry tons per hour, based on - x 4 mesh screened feed of medium hard gravel. Mill discharge is generally less than 5% + 4 mesh in wet open circuit operations, for dry grinding work reduce the capacities indicated by approximately 30% to 50%.

A Rod Mill has for Working Principle its inside filledgrinding media, in this case STEEL RODS. These rods run the length of the machine, which is most commonly between eight and sixteen feet in length. The diameter of these rods will range from, when new, between two and four inches. The rods arefree inside the mill. When the mill is turned, the rods tumble against one another grinding all the ore that is between them to aid in the grinding, water is added with the ore as it enters the mill.So from that you can see why it is called a wet tumbling mill. The ore is ground wet and the mill revolves. This causes the grinding media inside of it to tumble grinding the ore.

Historically there has been three basic ways of grinding ore, hammer mills, rolls, or wet tumbling mills. Hammer mills and rolls are not used that often and then usually only for special applications as in lab work or chemical preparation.

The type of mill that is used for grinding ore in a modern concentrator is the wet tumbling mill. These mills may be divided into three types ROD MILLS, BALL MILLS andAUTOGENOUS MILLS. In the first type, the ROD MILL, the ore is introduced into the mill.

From the trunnion liner out wards first we will come to the FACE PLATE. It is slightly concave to create the POOLING AREA for the rock to collect in before entry to the ROD-LOAD. On the outside attached to the face plate is the BULL GEAR. This gear completely circles the mill and provides the interface between the motor and the mill. The bull gear and drive line may be at the other end of the mill instead. There are advantages and disadvantages to either end this will be explained later when we are discussing the motor and drive line. But for now back to the face plate, attached to the other side of the face plate is the SHELL. The shell is the body of the mill. On the inside of the mill there are two layers of material, the first layer is the BACKING for the liners. This is customarily constructed from rubber but wood may be used as well. The purpose of this backing is two-fold, one to absorb the shock that is transmitted through the liners from normal running. And to provide the shell with a protective covering to eliminate the abrasion that is produced by the finely ground rock and water. Without this rubber or wood backing, the life of the mill is drastically reduced due to metal fatigue and simply being worn away.For those of you arent familiar with METAL FATIGUE I will explain. When metal is continually pounded or vibrated, the molecular structure of the metal begins to change, it is said to CRYSTALLIZE, and the metal becomes hard and finally loses all ability to give with the vibration. Thousands of microscopic cracks will begin to appear, as the fatigue of the metal continues, these cracks will grow to become major problems.

Later for interest sake we will explain the difference in some of them, but for now lets stay with identifying the parts of the mill. We have already mentioned the trunnion liner so let start from there.

The trunnion liner may also be referred to as the THROAT LINER. You will find that many of these parts will be called two or even sometimes three names, All I can say is try not to let it confuse you, The name isnt as important as the job that it does. As long as everybody that you work with agree on which name to use, it doesnt matter that much.

Next to this liner is the END LINERS, or to some, the PACE PLATE LINERS.The FILLER RING which is next is not standard in all mills, some mills have them, and some dont. Their job is to fill the corner of the mill up so the shell will not wear at that point. They dont provide any lift to the media, in fact quite often the media will not come into contact with them at all, but what they do is make changing liners that much easier. With different liner designs the replacement of a single liner may be quite difficult and to change one could become a lengthy project.

The liner that butts into the filler liner is known as a BELLY LINER or SHELL LINER, and in some designs LIFTER BARS. These liners and/or lifters give the media its CASCADING action and also receive the most wear. They cover the complete body of the mill and have the largest selection of types to choose from.

As the two ends of the mill are the same there isnt any reason to go over the other face plate. The discharge trunnion assembly is very much like the feed trunnion except that, it wont have a worm as part of the liner. Instead of a feed seal bolted to it, it may have a screen.

This is called a TRUMMEL SCREEN and its purpose is to screen out any rock that didnt get ground as well as any TRAMP METAL or REJECT STEEL that may be coming out of the mill. Reject steel is the old grinding media that has been worn so small that it comes out of the mill. If this tramp metal and steel is allowed to get into pumps and classifiers damage and plug- ups may be caused.

With regards to Rod Mills, let us start by identifying the different portions of the rod load as it goes through one revolution, as you will see, each of these areas will hold interest for the Grinding operator.

As the rod mill turns, the rods are carried by the lifting portion of the liners. The height that they are lifted is referred to as the lift of the liners. As they roll off of the liners, the rods enter the cascade zone. The rods roll through the cascade zone until they come to the toe of the load. At this point the rods come to rest in relation to the shell of the mill. The liners lift the rods back to begin the cascade again. You will notice, that as you go deeper into the rod load, the rod movement becomes less and less until the movement is very slight at the deepest part. This area is called the core of the load. As a description of the normal grinding action, the rods and the ore react together like this. The ore enters-the mill and is deposited in the pooling area directly under the feed trunnion.

This pooling area allows the large rock to fall towards the outside portion of the load, the TOE area. This is the zone with the greatest movement in it, which means the area that will have the highest impact on the ore.

The rock will be carried up by the rods as they go through the CASCADE ZONE reducing the size of the rock. As each particle of ore becomes smaller it will work towards the CORE ZONE while travelling the length of the mill. That makes for a rather neat arrangement doesnt it. The larger rock is deposited in the area where the maximum impact from the rod load occurs and then as each particle gets smaller it slowly travels inwards towards the centre of the load.

This is where the maximum surface contact takes place, producing the finer grind. When the ore has travelled from one end of the mill to the other end it will have completed its grinding cycle in this mill. As it exits the rod load it will be deposited in another POOLING AREA prior to leaving the mill by way of the DISCHARGE TRUNNION. Prom that you can see how a mill will become over loaded. If for some reason the rock begins to separate the rods over their entire length, the larger rock will prevent the intermediate rock from being ground. Which in turn will begin to invade the area that the fine material is being ground in. As the rods become separated through the entire load, the grind will get progressively worse until the unground rock is in the discharge pooling area. At this point, the operator will notice, that large rock is being discharged from the discharge trunnion.

During normal operations there is usually a certain amount of this larger rock that wont get ground. These are known as REJECTS and they serve as one of the tattle tales as to how the mill is grinding. If there is an increase of these rejects then the mill isnt grinding that well and the operator will have to do something about it. If he doesnt the mill load will continue to climb, until the rods in the lifting zone are completely separated. When this happens those rods will have quit grinding.

There is a visual warning of this happening that the operator can take advantage of. The lift on the rods will get higher and higher until they are being carried to the very top of the mill before cascading. I think falling would be a better word for it though. As this is happening, the core of the load will be slowly moving away from the shell towards the center of the mill. This is because the volume of the mill is being filled with unground rock. This will continue until the load hits a critical volume and a critical density. The rock still coming in to the mill will have to have some where to go so it tries pushing the rods out of the mill. Unfortunately they wont make it, the first hunch of rods that get far enough into the discharge trunnion will be- hit by the rest of the load bending and twisting them until they look like SPAGHETTI. This usually shuts the mill down for a couple of days while the millwrights cut the bent rods out of the mill.

On the other end of the scale, if the density is to light, the rod load will become too active, not having the solids in the mill to cushion the impact of rod on rod and rod on liner. As the rods enter the cascade zone, the pattern of the movement of the rods will be different. Instead of having a tightly tumbling mass of rods, the rods will be separated. The lift will be higher and the cascade will form more of an arc. The impact of the rods on the rock will be less because there will be more give in the rod load, with high amount of steel on steel causing the rods to bounce.

Letslook at how these Rod mills work, as I mentioned earlier there are steel rods inside the mill, it is their job to do the actual grinding. If you look at the mill in a cross section of an end view. You will get a very good illustration of the grinding action, of the mill.

The LINERS provide the tumbling action of the rods. When the mill rotates the rods are lifted until they roll off of the liners, this is known as CASCADING. The ore enters the mill at the feed end, as the rods cascade and tumble, the rock is caught between the rods and is ground. The size that the rock will be ground to is dependent on the amount of time the ore is in the mill, how many rods there are in the mill V and the size of the incoming ore.

laboratory rod mill

laboratory rod mill

The 21 Liter (5 gallon) 911METALLURGY 911MPE21BM dual function Laboratory RodMill / BallMill is designed to meet the industrial requirements to grind coal, cement and a wide variety of ores. The dual dutyLaboratory Grinding Mill consists of a gear motor mounted on a high precision solid steel underframe complete with outlet funnel and a set of separation screens plus sample collector.

The mill incorporates a yoke and locking mechanism to facilitate easy access to the contents of the mill. An appropriate ball or rod charge is provided with the mill. The motor incorporates a solid-state controller to accurately control the drum speed of up to 70 RPM. This controller has an internal overload protection. A revolution counter is included to allow accurate control of milling which will automatically stop the mill when the desired milling duration is reached. The lid incorporates a quick release locking mechanism.

Easy convertible from Ball Mill to Rod Mill. Drums, balls and rods available in different grades of steel: SS304, SS316, SS303, ST37, ST52 and other steel materials or liners on request. Easy tilt to empty the drum

As stated above, the purpose of this research was primarily to establish a quantitative relationship between a laboratory ball mill capacity and fineness of finished product. As is nearly always the case in research, the major problem cannot be attacked until a number of smaller ones have been disposed of: apparatus must be decided upon and designed to meet the needs of the research; experimental technic must be developed to accord with good scientific procedure, which will give data of practical use; and the data must be interpreted. This investigation, however, instead of being one of merely determining mill capacity (for a given mill) as related to fineness of finished product, also became a study of batch grinding in a laboratory ball mill as related to time of grind.

The selection of apparatus was necessarily more or less arbitrary. A cylinder 16 inches in diameter by 7 inches in length was chosen to contain the grinding mediaa 43 per cent full load of 1-inch steel balls. Mechanism was provided to rotate the cylinder, at a constant speed of 55 r.p.m. This speed was decided upon on the basis of observation made at one end of the mill, which was closed with a coarse-mesh screen. The mill speed chosen was not necessarily exactly the speed which would give maximum mill output, but it probably was close to what may be termed the best speed. That there is a best speed for each size of ball, ball load, feed size, etc., is shown in the researches of Fahrenwald and Lee and this is just one example of the complexity of the grinding problem. The selected speed must therefore be considered a more or, less arbitrary one, but it fully served the purpose of this investigation.

In the experiments of this study, grinding was done wet. Thirty per cent of water by weight was added to each charge. This ore-water ratio was arrived at from a series of experiments in which the percentage of water was the variable. Thirty per cent of water by weight gave approximately the maximum mill outputgrinding through 100 mesh.

The weight of feed charge introduced into the mill also was determined from a series of experiments in which weight of feed charge was the variable. The weight of feed charge giving the greatest number of grams of finished minus- 100 mesh sand was approximately 1,750 grams. As data later presented will show, this is not exactly the weight of charge which will give maximum mill output in a unit of time; it is, however, approximately that weight of charge which gives maximum output under the conditions of (1) the size (sieve analysis) of feed used, and (2) a short-period grind. This weight of charge served the purpose of the batch-grind experiments of this study.

Having established the apparatus to be used and, in part, the conditions of the experiments, other factors and variables having even greater bearing upon mill output came up. The most important among these was the time of grind. For a given weight of feed charge to be ground in a batch laboratory ball mill, there was no information available to show how the rate of production of finished product in the mill varied with the time, of operation of the mill; that is, for a 10-minute grind it was not known if the output was greatest for the first minute, the second minute, or the sixth or tenth minute of operation. This question seemed of such importance that a decision was made to investigate it rather thoroughly.

In this study, rate of grinding or mill efficiency is stated in terms of grams per minute, abbreviated GPM. A more scientific basis on which to calculate mill efficiency probably would have been that of total new surface produced per unit of time. This basis, however, was not thought to offer any advantage over the one stated.

The size analysis of the feed for experimentation was also more or less arbitrarily selected; and, as these experiments, show, it is not the proper sieve analysis to give maximum mill output. Here again the proper feed size could not be known in advance, and the arbitrary feed size selected serves for the work in hand. Quartz of the white massive variety was selected for this study because of its homogeneity and its known surface constants.

wet type rod mill,mineral rod mill video - hxjq machinery

wet type rod mill,mineral rod mill video - hxjq machinery

With the development of economy and the gradual growth of the infrastructure, the applicationscope of the rod grinder becomes wider and wider. Based on the use of the rod mill, the rod mill can be divided into wet type rod mill and dry rod mill. The users can select the machine according to their actual situation.

The wet type rod mill produced by Henan Hongxing Mining Machinery is widely used in metal and nonmetal mines, water conservancy, glass and building materials sector which have strict requirements for the particle size of the materials. This kind of wet type rod mill is suitable for the first open-circuit grinding in the two-stage grinding process.

The particle size is from 1mm to 3mm. The wet type rod grinding machine is particularly suited to deal with the tungsten, tin and other brittle materials in the gravity concentration plant. The transmission machinery drives the cylinder for slow rotation. The grinding medium is a long round steel bar. The materials are fed into the machine from the feeding end of the cylinder. The materials are thrown down and impacted by the steel bars and the ores themselves in the cylinder.

Finally, the materials are crushed in the cylinder. Since the materials are continuously fed into the machine, the pressure promotes the materials in the cylinder to move towards the discharging end from the feeding end. The energy-efficient wet type rod grinding machine produced by Henan Hongxing Mining Machinery uses the rolling bearing bush to replace the sliding bearing bush. Compared with sliding bearings, the wet type rod mill with rolling bearing can save energy 10% to 20%. In the case of the same power, the production capacity can be increased to 10% to 20%.

Note: For product inquiry or order requirements, Please fill the following form, and we will contact you within one business day, and all your information is kept confidential and is not shared with any third parties.

sms group gmbh: bar and wire rod mills

sms group gmbh: bar and wire rod mills

What's special about our bar and wire rod mills is not only their high flexibility, but also their proven reliability. There is an array of products our state-of-the-art mills can manufacture in one mill: angles, squares, flats, channels, rounds, and wire rod. This top versatility also means you can efficiently produce all sizes, materials, and alloys.

For producing rebars with lower operational cost and to increase the efficiency we have our High Speed Delivery system HSD available, which allows to run with 45m/s onto the cooling bed. Compared to the traditional slitting method, conversion costs can be saved in the range of 6 to 13 Euro/ton. The Vertical Compact Coiler VCC is todays state of the art solution for producing compact and torsion-free coils - exactly what more and more rebar processors are requiring for automatic handling in cut and bend machines.

The new measuring gauge at the exit side of the 3-roll block applies light section technology. Using our laser/image technology, four sensors perform synchronous, contact-free measurements over the entire cross section of the bar. There are no moving or oscillating parts, making the system almost maintenance-free. It achieves a scanning rate of 500 scans per second. That's why the system can produce a true-shape cross-section from up to 400 synchronous measuring points in a shared coordination system. You can see the result displayed with utmost precision.

Our MEERdrive technology makes roll ring management significantly easier, offers exceptional pass design flexibility, and minimizes maintenance. Precise rolling process control guarantees the required end product properties. Our system also optimizes roll ring utilization and slashes energy consumption. Why? Because individual motors operate much more efficiently than group drives.

However, not only a service partner for your plants and machines, SMS group is also there for your staff. Furthermore, You can enroll on standardized and individual training programs designed for you by our SMS TECademy. That ensures you strengthen your competence as a plant owner.

Whether you require one-off equipment checks, continuous condition monitoring, remote service, or regular plant inspections: our service experts will take care of it all. You can even outsource your complete maintenance operations to us. This ensures excellent plant availability plus best production results.

When the spare parts you need are no longer available or the new generation is not 100% compatible, you risk plant standstills. That's why SMS group constantly monitors the availability of all parts and, where necessary, offers modern alternatives - even for parts from third-party suppliers. This ensures competitiveness and full productivity over the entire life cycle of your plant.

Even plants "built to last" need to be critically examined from time to time, because markets and production processes are continuously evolving. Together with you, our service experts will find the best revamp options for your requirements. Once again bang up to date, your plants will then be ready to bolster your strong position on the market.

Connect with us for direct news and updates on the go. Find out more about projects, products, and innovations at SMS group. Set your personal preferences and see only content based on your interests. Turn on push notifications and youll never need to miss out on the latest news in and around SMS group

Get in Touch with Mechanic
Related Products
Recent Posts
  1. gyratory ball mill vrs

  2. rod 400 solar pump

  3. prices of ball mills in the philippines

  4. low price new river pebble ceramic ball mill sell in liege

  5. flotating gold flotation production line high frequency

  6. jaw crusher blue metal companies in erode

  7. feldspar lumps bauxite ball mill

  8. ball mills south africa

  9. quartz mining wet ball mill quartz mining growing

  10. sops for ball mill equepments

  11. tangible benefits small gold mine sand making machine price in nadi

  12. vertical roller mill operating system

  13. small production jaw crusher

  14. low price large rock stone crusher sell in oceania

  15. scrap copper cable recycling machine

  16. bizerte environmental lump coal cement mill price

  17. raymond grinding mill manufacturers india

  18. magnetic iron separator for sale

  19. used jaw crusher for sale in tn

  20. vibrating screen ball mill load calculation formula