using ball mills to extract raw gold from ores

using ball mills to extract raw gold from ores

Placer mining and lode mining are very different. Whereas placer gold has been released from within the rock and is generally free from any significant matrix, lode gold presents different challenges. While gold may be present in ore, it must somehow be released for proper extraction.

As a result, a number of machines have been invented to bring about maximum results with regard to obtaining the much needed resource, gold. One of such equipment is the ball mill. Below is the write-up of how a ball mill works, is used to crush ore and an explanation regarding its effectiveness in gold mining.

First of all, in order to get the best out of how this particular equipment is used it is important to get acquainted with knowledge on what it is, and is made of. Hence, a mill is a piece of equipment used to grind ores. Its major purpose is to perform the grinding and blending of rocks and ores to release any free-gold that is contained within them.

At major mines, the mill was the critical equipment that was required to process the ores that were extracted from deep underground. Many early mines used stamp mills, but many operations today find that ball mills are more functional for smaller operations and perform well with the modern equipment we have available now such as combustion engines.

To perform its functions, the ball mill operates on the principle of impact and attrition. This principle entails that the balls are dropped from near the top of the shell in order to bring about size reduction impact.

The major components of the ball mill include a shell that is hollow and is suspended on its axis to bring about rotation. The axis of the shell can be suspended horizontally or at an angle to the horizontal.

The shell is filled with quite few, but reasonable amount of balls which do the grinding process, and can be made of steel such as chrome steel and stainless steel. They can also be made of ceramic or rubber depending on their targeted material to be ground.

Its major operations are categorized into two, namely the dry and wet processes. Through those processes the machine is able to perform its functions of grinding the crushed materials. One of such functions, is that which is witnessed when grinding different types of ore, such as gold ore.

Now here is what one must know with regard to how the ball mill operates. The drum of the mill (shell) is suspended on two self-aligned rollers. Then the material to be worked on is loaded through the hopper.

From there, the mill is driven using a motor with a clutch, gearbox and the flexible coupling. The mill is then lifted to a certain level of height as it rotates. It is from that height that the balls begin to freely fall or roll down in order to grind the material that has been loaded.

After the material is ground, it is then removed from the mill depending on the discharge method used on the machine. For example, there are center unloading mills as well as unloading through the grille mills.

For the center unloading mills, the ground material is discharged through a hollow unloading trunnion using a free sink. To make it more efficient the pulp level in the drum should at least be above the level of the lower generating trunnion for unloading.

On the other hand, mills whose unloading is done using the grid consist of a lifting device which helps to unload the crushed material. For this reason, in such a mill the slurry level is likely to be lower compared to the unlading trunnion level. In such a mill, a grid with openings used for unloading crushed material is located in the unloading end of the drum.

To crush the gold ore in order to obtain pure gold, the large ore of gold is fed into a jaw crusher or mobile jaw crusher for the primary crushing process. The crushing process acts as a medium of screening the fine gold ore. It is then sieved using the vibrating screen and later sent through the use of a conveyer belt.

The ore is sent into a single-cylinder hydraulic cone crusher for the secondary crushing. Thereafter, the gold ore is transferred to a multi-cylinder hydraulic cone crusher, where the ore is crushed further into finer material. From there, the crushed gold ore is sent to a ball mill, evenly as it passes through a vibrating screen for grinding.

From the ball mill, the gold ore powder is subjected to the process known as beneficiation for further crushing before classification and floatation processes. Most commonly, professional mining operations will use a shaker table at this point. These are extremely effective at capturing tiny particles of free-gold that has been released from the ores.

how much the gold ore ball mill - jxsc machine

how much the gold ore ball mill - jxsc machine

Capacity 0.65~130 t/h Feeding size 20-25mm Discharge size 0.074-0.89mm Grinding ball 1.5-338t Application gold ore and other ores grinding Advantages Rolling bearing has little friction and low consumption; Reasonable sealing, low failure; Little dust, low noise, energy-saving; Special design, good grinding effect, 60s manual response, 24hrs quotation. More ball mill model details

Since most of the gold mines contain impurities, we only can obtain the gold concentrate after a series of steps such as crushing, grinding, and sieving. The ball mill plays an important role in the gold ore grinding process, as a kind of high-efficiency fine grinding equipment, it has been widely used in fine grinding and ultra-fine grinding operations in mining, chemical, new materials, building materials and other fields. In the gold mining plant, the ball mill usually set after the jaw crusher, in a second-stage grinding, process sulfur-containing arsenic-containing refractory gold ore, and tailings treatment. The outstanding advantages of gold ball mill are low energy consumption, ultra-fine grinding, simple foundation, low noise and vibration, and has been regarded as an efficient new fine grinding equipment.

The main parts of the gold ore ball mill includes the feeding, the supporting device, the rotating part, the unloading device and the transmission device. Working principle: gold ore ball mill is a low-speed rotary cylinder horizontally mounted on the bearing. In the rotary cylinder, there are heavy steel balls. Along the motor and gear rotates the cylinder, generating centrifugal force to bring the steel ball to a certain height and then falling. The ore material are gradually crushed and ground by the steel ball impact force. The material is subjected to impact crushing and grinding, and the material is slowly flowed from the feeding end to the discharging end by the material level difference, until the material is discharged. That is the overflow ball mill.

Gold ore ball mill is especially suitable for two-stage grinding or ultra-fine grinding because of its advantages of ultra-fine grinding, high efficiency and energy-saving, low installation cost and low wear.

A gold mine used the JXSC gold ore ball mill for the second stage grinding to technically transform the original process, and achieved good results. After the transformation, the production capacity reached 130~140t/d. The production results show that the JXSC gold mine ball mill has low electromechanical consumption, high grinding efficiency, low wear of wearing parts and vibration noise less than 85dB.

There are rich sulfur-bearing and arsenic-containing refractory gold ore resources, but due to the lack of practical technology, these gold resources are not fully utilized. The JXSC Gold Mining Ball Mill has two basic characteristics of ultra-fine grinding and enhanced chemical leaching. The use of ultra-fine grinding of the JXSC gold ore ball mill can strengthen the alkali leaching, which may provide a technically feasible and economically reasonable treatment process for some sulfur-containing and arsenic-containing refractory gold ores.

Ball mill superfine grinding for secondary utilization of gold-bearing tailings in which gold was not fully recovered in the old days due to the technique limitation. In some gold tailings, the gold content is as high as 2~8g/t, if using the JXSC gold ore ball mill to retreat and recover gold, its potential economic benefits are huge.

The ball mill price are determined by many factors, such as machine weight, cylinder material, steel ball material, motor brand, lined plate thickness and material, etc. A professional and reasonable quotation made on your mine conditions, mine minerals, capacity, rock hardness, clay, etc. We are here to help.

JXSC is a 35 years Chinese mining equipment manufacturer, has great quality & price advantages in the ball mill, jaw crusher, trommel scrubber, shaker table and so on. Contact us for a 12hrs quotation.

gold ore rock crusher impact flail processing quartz crushing mill - gold-mill.com

gold ore rock crusher impact flail processing quartz crushing mill - gold-mill.com

These portable impact mill rock crushers that we produce are high quality, made in the USA impact mills that crush rocks and realease gold bearing ore. These

are made of the highest quality, super thick, high carbon, industrial steel materials for years of trouble free use. We then use an industrial quality high

temperature powder coating to protect the mill from corrosion and to keep its beauty for many seasons to come. We also show you how to crush, grind

and process your gold ore bearing quartz material and offer information on gold recovery with these units. (800) 688-4080

NEW Gold Stryker GS-4000 HV (High Volume) is a high output / dual adjustable discharge / heavy duty version flail impact rock crusher gold mill that is very portable and perfect for the small gold mining operation. The Gold Stryker GS-4000HV uses a 13 HP Honda Industrial engine for many years of trouble free use. It can process and crush up to 3-3.5 tons of material in a day, all the way down to #300 mesh through the mill to release the gold. $6499 Sale

(The quantity of material the GS can process depends on the size, density and hardness of the rock being fed into the hopper. The smaller the rock, the more material you can run in a day.)

The New Gold Stryker GS-5000HD is a large flail impact rock crusher gold mill that is very portable and perfect for the small gold mining operation The Gold Stryker GS-5000HD uses a HP Honda Industrial engine for many years of trouble free use. It can process and crush up to 5+ tons of material in a day, all the way down to #300 mesh through the mill to release the gold. $7899 Sale

(The quantity of material the GS can process depends on the size, density and hardness of the rock being fed into the hopper. The smaller the rock, the more material you can run in a day.)

Gold Stryker GS-7000-LD is a very large flail impact rock crusher gold mill that is very portable and perfect for the small gold mining operation. The Gold Stryker GS-7000-LDuses a large 25 HP Honda Industrial engine for many years of trouble free use. It can process and crush up to 7 tons in a day, all the way down to #300 mesh through the mill to release the gold. $15999 Sale

(The quantity of material the GS can process depends on the size, density and hardness of the rock being fed into the hopper. The smaller the rock, the more material you can run in a day.)

Our Gold Stryker impact rock crusher mill is a very portable unit and a serious work horse. Not a small toy for testing a few rocks. They will also process the gold

daily. Many of our customers are located in South America, Canada, Africa, Alaska, The Bahamas and other far away places. If you can see this web page, then we can ship to you!

what are the differences between ball mill and rod mill? | fote machinery

what are the differences between ball mill and rod mill? | fote machinery

Ball mill and rod mill are the common grinding equipment applied in the grinding process. They are similar in appearance and both of them are horizontal cylindrical structures. Their cylinders are equipped with grinding medium, feeder, gears, and transmission device.

The working principle of ball mill and rod mill machine is similar, too. That is, the cylinder drives the movement of the grinding medium (lifting the grinding medium to a certain height then dropping). Under the action of centrifugal force and friction, the material is impacted and ground to required size, so as to realize the operation of mineral grinding.

Grate discharge ball mill can discharge material through sieve plate, with the advantage of the low height of the discharge port which can make the material pass quickly so tha t to avoid over-grinding of material. Under the same condition, it has a higher capacity and can save more energy than other types of mills;

It is better to choose a grate discharge ball mill when the required discharge size is in the range of 0.2 to 0.3 mm. Grate discharge ball mill is usually applied in the first grinding system because it can discharge the qualified product immediately.

Overflow discharge ball mill can grind ores into the size under 0.2 mm, so it is very suitable for the second grinding system. The capacity of it is about 15% lower than grate discharge ball mill in the same specification, and the loaded grinding medium is also less than that one.

It can be divided into three types of rod mills according to the discharge methods, center and side discharge rod mill, end and side discharge rod mill and shaft neck overflow discharge rod mill.

It is fed through the shaft necks in the two ends of rod mill, and discharges ore pulp through the port in the center of the cylinder. Center and side discharge rod mill can grind ores coarsely because of its structure.

This kind of rod mill can be used for wet grinding and dry grinding. "A rod mill is recommended if we want to properly grind large grains, because the ball mill will not attack them as well as rod mills will."

It is fed through one end of the shaft neck, and with the help of several circular holes, the ore pulp is discharged to the next ring groove. The rod mill is mainly used for dry and wet grinding processes that require the production of medium-sized products.

The diameter of the shaft neck is larger than the diameter of the feeding port about 10 to 20 centimeters, so that the height difference can form a gradient for ore pulp flow. There is equipped with a spiral screen in the discharge shaft neck to remove the impurities.

It has high toughness, good manufacturability and low price. The surface layer of high manganese steel will harden rapidly under the action of great impact or contact. The harder index is five to seven times higher than other materials, and the wear resistance is greatly improved.

It has high toughness, good manufacturability and low price. The surface layer of high manganese steel will harden rapidly under the action of great impact or contact. The harder index is five to seven times higher than other materials, and the wear resistance is greatly improved.

It is made of several elements such as chromium and molybdenum, which has high hardness and good toughness. Under the same work condition, the service of this kind of ball is one time longer than the high manganese steel ball.

After the professional technology straightening and quenching processing process, a high carbon steel rod has high hardness, excellent performance, good wear resistance and outstanding quality.

The steel ball of ball mill and the mineral material are in point contact, so the finished product has a high degree of fineness, but it is also prone to over-grinding. Therefore, it is suitable for the production with high material fineness and is not suitable for the gravity beneficiation of metal ores.

The steel rod and the material are in line or surface contact, and most of the coarse particles are first crushed and then ground. Therefore, the finished product is uniform in quality, excellent in particle size, and high in qualification rate.

The cylinder shape of the rod mill and the ball mill is different: the cylinder of the rod mill is a long type, and the floor area is large. The ratio of the length to the diameter of the cylinder is generally 1.5 to 2.0;

The cylinder of the ball mill is a barrel or a cone. And the ratio of the length to the diameter of the cylinder is small, and in most cases the ratio is only slightly larger than 1, and the floor area is small, too.

The above is the main content of this article. The ball mill and the rod mill are the same type of machine on the appearance, but there are still great differences in the interior. It is very necessary to select a suitable machine for the production to optimize the product effect and maximize its efficiency.

As a leading mining machinery manufacturer and exporter in China, we are always here to provide you with high quality products and better services. Welcome to contact us through one of the following ways or visit our company and factories.

Based on the high quality and complete after-sales service, our products have been exported to more than 120 countries and regions. Fote Machinery has been the choice of more than 200,000 customers.

ball mills

ball mills

In all ore dressing and milling Operations, including flotation, cyanidation, gravity concentration, and amalgamation, the Working Principle is to crush and grind, often with rob mill & ball mills, the ore in order to liberate the minerals. In the chemical and process industries, grinding is an important step in preparing raw materials for subsequent treatment.In present day practice, ore is reduced to a size many times finer than can be obtained with crushers. Over a period of many years various fine grinding machines have been developed and used, but the ball mill has become standard due to its simplicity and low operating cost.

A ball millefficiently operated performs a wide variety of services. In small milling plants, where simplicity is most essential, it is not economical to use more than single stage crushing, because the Steel-Head Ball or Rod Mill will take up to 2 feed and grind it to the desired fineness. In larger plants where several stages of coarse and fine crushing are used, it is customary to crush from 1/2 to as fine as 8 mesh.

Many grinding circuits necessitate regrinding of concentrates or middling products to extremely fine sizes to liberate the closely associated minerals from each other. In these cases, the feed to the ball mill may be from 10 to 100 mesh or even finer.

Where the finished product does not have to be uniform, a ball mill may be operated in open circuit, but where the finished product must be uniform it is essential that the grinding mill be used in closed circuit with a screen, if a coarse product is desired, and with a classifier if a fine product is required. In most cases it is desirable to operate the grinding mill in closed circuit with a screen or classifier as higher efficiency and capacity are obtained. Often a mill using steel rods as the grinding medium is recommended, where the product must have the minimum amount of fines (rods give a more nearly uniform product).

Often a problem requires some study to determine the economic fineness to which a product can or should be ground. In this case the 911Equipment Company offers its complete testing service so that accurate grinding mill size may be determined.

Until recently many operators have believed that one particular type of grinding mill had greater efficiency and resulting capacity than some other type. However, it is now commonly agreed and accepted that the work done by any ballmill depends directly upon the power input; the maximum power input into any ball or rod mill depends upon weight of grinding charge, mill speed, and liner design.

The apparent difference in capacities between grinding mills (listed as being the same size) is due to the fact that there is no uniform method of designating the size of a mill, for example: a 5 x 5 Ball Mill has a working diameter of 5 inside the liners and has 20 per cent more capacity than all other ball mills designated as 5 x 5 where the shell is 5 inside diameter and the working diameter is only 48 with the liners in place.

Ball-Rod Mills, based on 4 liners and capacity varying as 2.6 power of mill diameter, on the 5 size give 20 per cent increased capacity; on the 4 size, 25 per cent; and on the 3 size, 28 per cent. This fact should be carefully kept in mind when determining the capacity of a Steel- Head Ball-Rod Mill, as this unit can carry a greater ball or rod charge and has potentially higher capacity in a given size when the full ball or rod charge is carried.

A mill shorter in length may be used if the grinding problem indicates a definite power input. This allows the alternative of greater capacity at a later date or a considerable saving in first cost with a shorter mill, if reserve capacity is not desired. The capacities of Ball-Rod Mills are considerably higher than many other types because the diameters are measured inside the liners.

The correct grinding mill depends so much upon the particular ore being treated and the product desired, that a mill must have maximum flexibility in length, type of grinding medium, type of discharge, and speed.With the Ball-Rod Mill it is possible to build this unit in exact accordance with your requirements, as illustrated.

To best serve your needs, the Trunnion can be furnished with small (standard), medium, or large diameter opening for each type of discharge. The sketch shows diagrammatic arrangements of the four different types of discharge for each size of trunnion opening, and peripheral discharge is described later.

Ball-Rod Mills of the grate discharge type are made by adding the improved type of grates to a standard Ball-Rod Mill. These grates are bolted to the discharge head in much the same manner as the standard headliners.

The grates are of alloy steel and are cast integral with the lifter bars which are essential to the efficient operation of this type of ball or rod mill. These lifter bars have a similar action to a pump:i. e., in lifting the product so as to discharge quickly through the mill trunnion.

These Discharge Grates also incorporate as an integral part, a liner between the lifters and steel head of the ball mill to prevent wear of the mill head. By combining these parts into a single casting, repairs and maintenance are greatly simplified. The center of the grate discharge end of this mill is open to permit adding of balls or for adding water to the mill through the discharge end.

Instead of being constructed of bars cast into a frame, Grates are cast entire and have cored holes which widen toward the outside of the mill similar to the taper in grizzly bars. The grate type discharge is illustrated.

The peripheral discharge type of Ball-Rod Mill is a modification of the grate type, and is recommended where a free gravity discharge is desired. It is particularly applicable when production of too many fine particles is detrimental and a quick pass through the mill is desired, and for dry grinding.

The drawings show the arrangement of the peripheral discharge. The discharge consists of openings in the shell into which bushings with holes of the desired size are inserted. On the outside of the mill, flanges are used to attach a stationary discharge hopper to prevent pulp splash or too much dust.

The mill may be operated either as a peripheral discharge or a combination or peripheral and trunnion discharge unit, depending on the desired operating conditions. If at any time the peripheral discharge is undesirable, plugs inserted into the bushings will convert the mill to a trunnion discharge type mill.

Unless otherwise specified, a hard iron liner is furnished. This liner is made of the best grade white iron and is most serviceable for the smaller size mills where large balls are not used. Hard iron liners have a much lower first cost.

Electric steel, although more expensive than hard iron, has advantage of minimum breakage and allows final wear to thinner section. Steel liners are recommended when the mills are for export or where the source of liner replacement is at a considerable distance.

Molychrome steel has longer wearing qualities and greater strength than hard iron. Breakage is not so apt to occur during shipment, and any size ball can be charged into a mill equipped with molychrome liners.

Manganese liners for Ball-Rod Mills are the world famous AMSCO Brand, and are the best obtainable. The first cost is the highest, but in most cases the cost per ton of ore ground is the lowest. These liners contain 12 to 14% manganese.

The feed and discharge trunnions are provided with cast iron or white iron throat liners. As these parts are not subjected to impact and must only withstand abrasion, alloys are not commonly used but can be supplied.

Gears for Ball-Rod Mills drives are furnished as standard on the discharge end of the mill where they are out of the way of the classifier return, scoop feeder, or original feed. Due to convertible type construction the mills can be furnished with gears on the feed end. Gear drives are available in two alternative combinations, which are:

All pinions are properly bored, key-seated, and pressed onto the steel countershaft, which is oversize and properly keyseated for the pinion and drive pulleys or sheaves. The countershaft operates on high grade, heavy duty, nickel babbitt bearings.

Any type of drive can be furnished for Ball-Rod Mills in accordance with your requirements. Belt drives are available with pulleys either plain or equipped with friction clutch. Various V- Rope combinations can also be supplied.

The most economical drive to use up to 50 H. P., is a high starting torque motor connected to the pinion shaft by means of a flat or V-Rope drive. For larger size motors the wound rotor (slip ring) is recommended due to its low current requirement in starting up the ball mill.

Should you be operating your own power plant or have D. C. current, please specify so that there will be no confusion as to motor characteristics. If switches are to be supplied, exact voltage to be used should be given.

Even though many ores require fine grinding for maximum recovery, most ores liberate a large percentage of the minerals during the first pass through the grinding unit. Thus, if the free minerals can be immediately removed from the ball mill classifier circuit, there is little chance for overgrinding.

This is actually what has happened wherever Mineral Jigs or Unit Flotation Cells have been installed in the ball mill classifier circuit. With the installation of one or both of these machines between the ball mill and classifier, as high as 70 per cent of the free gold and sulphide minerals can be immediately removed, thus reducing grinding costs and improving over-all recovery. The advantage of this method lies in the fact that heavy and usually valuable minerals, which otherwise would be ground finer because of their faster settling in the classifier and consequent return to the grinding mill, are removed from the circuit as soon as freed. This applies particularly to gold and lead ores.

Ball-Rod Mills have heavy rolled steel plate shells which are arc welded inside and outside to the steel heads or to rolled steel flanges, depending upon the type of mill. The double welding not only gives increased structural strength, but eliminates any possibility of leakage.

Where a single or double flanged shell is used, the faces are accurately machined and drilled to template to insure perfect fit and alignment with the holes in the head. These flanges are machined with male and female joints which take the shearing stresses off the bolts.

The Ball-Rod Mill Heads are oversize in section, heavily ribbed and are cast from electric furnace steel which has a strength of approximately four times that of cast iron. The head and trunnion bearings are designed to support a mill with length double its diameter. This extra strength, besides eliminating the possibility of head breakage or other structural failure (either while in transit or while in service), imparts to Ball-Rod Mills a flexibility heretofore lacking in grinding mills. Also, for instance, if you have a 5 x 5 mill, you can add another 5 shell length and thus get double the original capacity; or any length required up to a maximum of 12 total length.

On Type A mills the steel heads are double welded to the rolled steel shell. On type B and other flanged type mills the heads are machined with male and female joints to match the shell flanges, thus taking the shearing stresses from the heavy machine bolts which connect the shell flanges to the heads.

The manhole cover is protected from wear by heavy liners. An extended lip is provided for loosening the door with a crow-bar, and lifting handles are also provided. The manhole door is furnished with suitable gaskets to prevent leakage.

The mill trunnions are carried on heavy babbitt bearings which provide ample surface to insure low bearing pressure. If at any time the normal length is doubled to obtain increased capacity, these large trunnion bearings will easily support the additional load. Trunnion bearings are of the rigid type, as the perfect alignment of the trunnion surface on Ball-Rod Mills eliminates any need for the more expensive self-aligning type of bearing.

The cap on the upper half of the trunnion bearing is provided with a shroud which extends over the drip flange of the trunnion and effectively prevents the entrance of dirt or grit. The bearing has a large space for wool waste and lubricant and this is easily accessible through a large opening which is covered to prevent dirt from getting into the bearing.Ball and socket bearings can be furnished.

Scoop Feeders for Ball-Rod Mills are made in various radius sizes. Standard scoops are made of cast iron and for the 3 size a 13 or 19 feeder is supplied, for the 4 size a 30 or 36, for the 5 a 36 or 42, and for the 6 a 42 or 48 feeder. Welded steel scoop feeders can, however, be supplied in any radius.

The correct size of feeder depends upon the size of the classifier, and the smallest feeder should be used which will permit gravity flow for closed circuit grinding between classifier and the ball or rod mill. All feeders are built with a removable wearing lip which can be easily replaced and are designed to give minimum scoop wear.

A combination drum and scoop feeder can be supplied if necessary. This feeder is made of heavy steel plate and strongly welded. These drum-scoop feeders are available in the same sizes as the cast iron feeders but can be built in any radius. Scoop liners can be furnished.

The trunnions on Ball-Rod Mills are flanged and carefully machined so that scoops are held in place by large machine bolts and not cap screws or stud bolts. The feed trunnion flange is machined with a shoulder for insuring a proper fit for the feed scoop, and the weight of the scoop is carried on this shoulder so that all strain is removed from the bolts which hold the scoop.

High carbon steel rods are recommended, hot rolled, hot sawed or sheared, to a length of 2 less than actual length of mill taken inside the liners. The initial rod charge is generally a mixture ranging from 1.5 to 3 in diameter. During operation, rod make-up is generally the maximum size. The weights per lineal foot of rods of various diameters are approximately: 1.5 to 6 lbs.; 2-10.7 lbs.; 2.5-16.7 lbs.; and 3-24 lbs.

Forged from the best high carbon manganese steel, they are of the finest quality which can be produced and give long, satisfactory service. Data on ball charges for Ball-Rod Mills are listed in Table 5. Further information regarding grinding balls is included in Table 6.

Rod Mills has a very define and narrow discharge product size range. Feeding a Rod Mill finer rocks will greatly impact its tonnage while not significantly affect its discharge product sizes. The 3.5 diameter rod of a mill, can only grind so fine.

Crushers are well understood by most. Rod and Ball Mills not so much however as their size reduction actions are hidden in the tube (mill). As for Rod Mills, the image above best expresses what is going on inside. As rocks is feed into the mill, they are crushed (pinched) by the weight of its 3.5 x 16 rods at one end while the smaller particles migrate towards the discharge end and get slightly abraded (as in a Ball Mill) on the way there.

We haveSmall Ball Mills for sale coming in at very good prices. These ball mills are relatively small, bearing mounted on a steel frame. All ball mills are sold with motor, gears, steel liners and optional grinding media charge/load.

Ball Mills or Rod Mills in a complete range of sizes up to 10 diameter x20 long, offer features of operation and convertibility to meet your exactneeds. They may be used for pulverizing and either wet or dry grindingsystems. Mills are available in both light-duty and heavy-duty constructionto meet your specific requirements.

All Mills feature electric cast steel heads and heavy rolled steelplate shells. Self-aligning main trunnion bearings on large mills are sealedand internally flood-lubricated. Replaceable mill trunnions. Pinion shaftbearings are self-aligning, roller bearing type, enclosed in dust-tightcarrier. Adjustable, single-unit soleplate under trunnion and drive pinionsfor perfect, permanent gear alignment.

Ball Mills can be supplied with either ceramic or rubber linings for wet or dry grinding, for continuous or batch type operation, in sizes from 15 x 21 to 8 x 12. High density ceramic linings of uniform hardness male possible thinner linings and greater and more effective grinding volume. Mills are shipped with liners installed.

Complete laboratory testing service, mill and air classifier engineering and proven equipment make possible a single source for your complete dry-grinding mill installation. Units available with air swept design and centrifugal classifiers or with elevators and mechanical type air classifiers. All sizes and capacities of units. Laboratory-size air classifier also available.

A special purpose batch mill designed especially for grinding and mixing involving acids and corrosive materials. No corners mean easy cleaning and choice of rubber or ceramic linings make it corrosion resistant. Shape of mill and ball segregation gives preferential grinding action for grinding and mixing of pigments and catalysts. Made in 2, 3 and 4 diameter grinding drums.

Nowadays grinding mills are almost extensively used for comminution of materials ranging from 5 mm to 40 mm (3/161 5/8) down to varying product sizes. They have vast applications within different branches of industry such as for example the ore dressing, cement, lime, porcelain and chemical industries and can be designed for continuous as well as batch grinding.

Ball mills can be used for coarse grinding as described for the rod mill. They will, however, in that application produce more fines and tramp oversize and will in any case necessitate installation of effective classification.If finer grinding is wanted two or three stage grinding is advisable as for instant primary rod mill with 75100 mm (34) rods, secondary ball mill with 2540 mm(11) balls and possibly tertiary ball mill with 20 mm () balls or cylpebs.To obtain a close size distribution in the fine range the specific surface of the grinding media should be as high as possible. Thus as small balls as possible should be used in each stage.

The principal field of rod mill usage is the preparation of products in the 5 mm0.4 mm (4 mesh to 35 mesh) range. It may sometimes be recommended also for finer grinding. Within these limits a rod mill is usually superior to and more efficient than a ball mill. The basic principle for rod grinding is reduction by line contact between rods extending the full length of the mill, resulting in selective grinding carried out on the largest particle sizes. This results in a minimum production of extreme fines or slimes and more effective grinding work as compared with a ball mill. One stage rod mill grinding is therefore suitable for preparation of feed to gravimetric ore dressing methods, certain flotation processes with slime problems and magnetic cobbing. Rod mills are frequently used as primary mills to produce suitable feed to the second grinding stage. Rod mills have usually a length/diameter ratio of at least 1.4.

Tube mills are in principle to be considered as ball mills, the basic difference being that the length/diameter ratio is greater (35). They are commonly used for surface cleaning or scrubbing action and fine grinding in open circuit.

In some cases it is suitable to use screened fractions of the material as grinding media. Such mills are usually called pebble mills, but the working principle is the same as for ball mills. As the power input is approximately directly proportional to the volume weight of the grinding media, the power input for pebble mills is correspondingly smaller than for a ball mill.

A dry process requires usually dry grinding. If the feed is wet and sticky, it is often necessary to lower the moisture content below 1 %. Grinding in front of wet processes can be done wet or dry. In dry grinding the energy consumption is higher, but the wear of linings and charge is less than for wet grinding, especially when treating highly abrasive and corrosive material. When comparing the economy of wet and dry grinding, the different costs for the entire process must be considered.

An increase in the mill speed will give a directly proportional increase in mill power but there seems to be a square proportional increase in the wear. Rod mills generally operate within the range of 6075 % of critical speed in order to avoid excessive wear and tangled rods. Ball and pebble mills are usually operated at 7085 % of critical speed. For dry grinding the speed is usually somewhat lower.

The mill lining can be made of rubber or different types of steel (manganese or Ni-hard) with liner types according to the customers requirements. For special applications we can also supply porcelain, basalt and other linings.

The mill power is approximately directly proportional to the charge volume within the normal range. When calculating a mill 40 % charge volume is generally used. In pebble and ball mills quite often charge volumes close to 50 % are used. In a pebble mill the pebble consumption ranges from 315 % and the charge has to be controlled automatically to maintain uniform power consumption.

In all cases the net energy consumption per ton (kWh/ton) must be known either from previous experience or laboratory tests before mill size can be determined. The required mill net power P kW ( = ton/hX kWh/ton) is obtained from

Trunnions of S.G. iron or steel castings with machined flange and bearing seat incl. device for dismantling the bearings. For smaller mills the heads and trunnions are sometimes made in grey cast iron.

The mills can be used either for dry or wet, rod or ball grinding. By using a separate attachment the discharge end can be changed so that the mills can be used for peripheral instead of overflow discharge.

what's the difference between sag mill and ball mill - jxsc machine

what's the difference between sag mill and ball mill - jxsc machine

A mill is a grinder used to grind and blend solid or hard materials into smaller pieces by means of shear, impact and compression methods. Grinding mill machine is an essential part of many industrial processes, there are mainly five types of mills to cover more than 90% materials size-reduction applications.

Do you the difference between the ball mill, rod mills, SAG mill, tube mill, pebble mill? In the previous article, I made a comparison of ball mill and rod mill. Today, we will learn about the difference between SAG mill vs ball mill.

AG/SAG is short for autogenous mill and semi-autogenous mill, it combines with two functions of crushing and grinding, uses the ground material itself as the grinding media, through the mutual impact and grinding action to gradually reduce the material size. SAG mill is usually used to grind large pieces into small pieces, especially for the pre-processing of grinding circuits, thus also known as primary stage grinding machine. Based on the high throughput and coarse grind, AG mills produce coarse grinds often classify mill discharge with screens and trommel. SAG mills grinding media includes some large and hard rocks, filled rate of 9% 20%. SAG mill grind ores through impact, attrition, abrasion forces. In practice, for a given ore and equal processing conditions, the AG milling has a finer grind than SAG mills.

The working principle of the self-grinding machine is basically the same as the ball mill, the biggest difference is that the sag grinding machine uses the crushed material inside the cylinder as the grinding medium, the material constantly impacts and grinding to gradually pulverize. Sometimes, in order to improve the processing capacity of the mill, a small amount of steel balls be added appropriately, usually occupying 2-3% of the volume of the mill (that is semi-autogenous grinding).

High capacity Ability to grind multiple types of ore in various circuit configurations, reduces the complexity of maintenance and coordination. Compared with the traditional tumbling mill, the autogenous mill reduces the consumption of lining plates and grinding media, thus have a lower operation cost. The self-grinding machine can grind the material to 0.074mm in one time, and its content accounts for 20% ~ 50% of the total amount of the product. Grinding ratio can reach 4000 ~ 5000, more than ten times higher than ball, rod mill.

Ball mills are fine grinders, have horizontal ball mill and vertical ball mill, their cylinders are partially filled with steel balls, manganese balls, or ceramic balls. The material is ground to the required fineness by rotating the cylinder causing friction and impact. The internal machinery of the ball mill grinds the material into powder and continues to rotate if extremely high precision and precision is required.

The ball mill can be applied in the cement production plants, mineral processing plants and where the fine grinding of raw material is required. From the volume, the ball mill divide into industrial ball mill and laboratory use the small ball mill, sample grinding test. In addition, these mills also play an important role in cold welding, alloy production, and thermal power plant power production.

The biggest characteristic of the sag mill is that the crushing ratio is large. The particle size of the materials to be ground is 300 ~ 400mm, sometimes even larger, and the minimum particle size of the materials to be discharged can reach 0.1 mm. The calculation shows that the crushing ratio can reach 3000 ~ 4000, while the ball mills crushing ratio is smaller. The feed size is usually between 20-30mm and the product size is 0-3mm.

Both the autogenous grinding mill and the ball mill feed parts are welded with groove and embedded inner wear-resistant lining plate. As the sag mill does not contain grinding medium, the abrasion and impact on the equipment are relatively small.

The feed of the ball mill contains grinding balls. In order to effectively reduce the direct impact of materials on the ball mill feed bushing and improve the service life of the ball mill feed bushing, the feeding point of the groove in the feeding part of the ball mill must be as close to the side of the mill barrel as possible. And because the ball mill feed grain size is larger, ball mill feeding groove must have a larger slope and height, so that feed smooth.

Since the power of the autogenous tumbling mill is relatively small, it is appropriate to choose dynamic and static pressure bearing. The ball bearing liner is made of lead-based bearing alloy, and the back of the bearing is formed with a waist drum to form a contact centering structure, with the advantages of flexible movement. The bearing housing is lubricated by high pressure during start-up and stop-up, and the oil film is formed by static pressure. The journal is lifted up to prevent dry friction on the sliding surface, and the starting energy moment is reduced. The bearing lining is provided with a snake-shaped cooling water pipe, which can supply cooling water when necessary to reduce the temperature of the bearing bush. The cooling water pipe is made of red copper which has certain corrosion resistance.

Ball mill power is relatively large, the appropriate choice of hydrostatic sliding bearing. The main bearing bush is lined with babbitt alloy bush, each bush has two high-pressure oil chambers, high-pressure oil has been supplied to the oil chamber before and during the operation of the mill, the high-pressure oil enters the oil chamber through the shunting motor, and the static pressure oil film is compensated automatically to ensure the same oil film thickness To provide a continuous static pressure oil film for mill operation, to ensure that the journal and the bearing Bush are completely out of contact, thus greatly reducing the mill start-up load, and can reduce the impact on the mill transmission part, but also can avoid the abrasion of the bearing Bush, the service life of the bearing Bush is prolonged. The pressure indication of the high pressure oil circuit can be used to reflect the load of the mill indirectly. When the mill stops running, the high pressure oil will float the Journal, and the Journal will stop gradually in the bush, so that the Bush will not be abraded. Each main bearing is equipped with two temperature probe, dynamic monitoring of the bearing Bush temperature, when the temperature is greater than the specified temperature value, it can automatically alarm and stop grinding. In order to compensate for the change of the mill length due to temperature, there is a gap between the hollow journal at the feeding end and the bearing Bush width, which allows the journal to move axially on the bearing Bush. The two ends of the main bearing are sealed in an annular way and filled with grease through the lubricating oil pipe to prevent the leakage of the lubricating oil and the entry of dust.

The end cover of the autogenous mill is made of steel plate and welded into one body; the structure is simple, but the rigidity and strength are low; the liner of the autogenous mill is made of high manganese steel.

The end cover and the hollow shaft can be made into an integral or split type according to the actual situation of the project. No matter the integral or split type structure, the end cover and the hollow shaft are all made of Casting After rough machining, the key parts are detected by ultrasonic, and after finishing, the surface is detected by magnetic particle. The surface of the hollow shaft journal is Polished after machining. The end cover and the cylinder body are all connected by high-strength bolts. Strict process measures to control the machining accuracy of the joint surface stop, to ensure reliable connection and the concentricity of the two end journal after final assembly. According to the actual situation of the project, the cylinder can be made as a whole or divided, with a flanged connection and stop positioning. All welds are penetration welds, and all welds are inspected by ultrasonic nondestructive testing After welding, the whole Shell is returned to the furnace for tempering stress relief treatment, and after heat treatment, the shell surface is shot-peened. The lining plate of the ball mill is usually made of alloy material.

The transmission part comprises a gear and a gear, a gear housing, a gear housing and an accessory thereof. The big gear of the transmission part of the self-grinding machine fits on the hollow shaft of the discharge material, which is smaller in size, but the seal of the gear cover is not good, and the ore slurry easily enters the hollow shaft of the discharge material, causing the hollow shaft to wear.

The big gear of the ball mill fits on the mill shell, the size is bigger, the big gear is divided into half structure, the radial and axial run-out of the big gear are controlled within the national standard, the aging treatment is up to the standard, and the stress and deformation after processing are prevented. The big gear seal adopts the radial seal and the reinforced big gear shield. It is welded and manufactured in the workshop. The geometric size is controlled, the deformation is prevented and the sealing effect is ensured. The small gear transmission device adopts the cast iron base, the bearing base and the bearing cap are processed at the same time to reduce the vibration in operation. Large and small gear lubrication: The use of spray lubrication device timing quantitative forced spray lubrication, automatic control, no manual operation. The gear cover is welded by profile steel and high-quality steel plate. In order to enhance the stiffness of the gear cover, the finite element analysis is carried out, and the supporting structure is added in the weak part according to the analysis results.

The self-mill adopts the self-return device to realize the discharge of the mill. The self-returning device is located in the revolving part of the mill, and the material forms a self-circulation in the revolving part of the mill through the self-returning device, discharging the qualified material from the mill, leading the unqualified material back into the revolving part to participate in the grinding operation.

The ball mill adopts a discharge screen similar to the ball mill, and the function of blocking the internal medium of the overflow ball mill is accomplished inside the rotary part of the ball mill. The discharge screen is only responsible for forcing out a small amount of the medium that overflows into the discharge screen through the internal welding reverse spiral, to achieve forced discharge mill.

The slow drive consists of a brake motor, a coupling, a planetary reducer and a claw-type clutch. The device is connected to a pinion shaft and is used for mill maintenance and replacement of liners. In addition, after the mill is shut down for a long time, the slow-speed transmission device before starting the main motor can eliminate the eccentric load of the steel ball, loosen the consolidation of the steel ball and materials, ensure safe start, avoid overloading of the air clutch, and play a protective role. The slow-speed transmission device can realize the point-to-point reverse in the electronic control design. When connecting the main motor drive, the claw-type Clutch automatically disengages, the maintenance personnel should pay attention to the safety.

The slow drive device of the ball mill is provided with a rack and pinion structure, and the operating handle is moved to the side away from the cylinder body The utility model not only reduces the labor intensity but also ensures the safety of the operators.

gold lost in ball mill - gravity separation & concentration methods - metallurgist & mineral processing engineer

gold lost in ball mill - gravity separation & concentration methods - metallurgist & mineral processing engineer

We sent a substantial amount ofquartz gold ore to a mill for processing. After a couple hundred tests on the material an average grade wascalculated. After milling for several days the mill says there is way less gold in the ore than what had been estimated.

Once milling began samples were taken once per shift, ball mill discharge, cyclone overflow, concentrate, and tails. Samples were sent to a lab for assay. With these samples the Lab has determined that there is at least 1 gpt missing that did not report to the concentrate or the tails. Theory from the lab is gold is stuck in the grinding circuit.

They are using flotation, metallurgy testing showed a decent recovery with gravity but a better recovery with flotation. Although in reality recovery was horrible below 60% This is mainly free gold, although it is very fine gold, as small as 10 micron size and the largest pieces being in the neighborhood of 500 micron. Also the ore has very little sulfides

If the cyclone underflow gold grade was higher than the cyclone overflow grade then you have free gold and you should look at putting a centrifugal concentrator in the grinding circuit. For low tonnage operations you can feed 100% of the ball mill discharge to the concentrator (this requires an extra pump, but is worth the effort). Modern units can recover free gold down to the 10 micron size range or finer.

In regards to the met balance, normal practice is to take the tails grade, feed tons, and gold produced and back calculate the head grade. Sampling the feed for head grade is always difficult. As a side comment, I'm not sure how your assay would be any more accurate than what is calculated in the met balance, but that is always the case to be argued between the miner and the mill guy. You can also compare the mill feed grade to the cyclone overflow grade to see if there are any losses in the grinding circuit.

You also need to check all the gold traps in the grinding circuit, i.e. cyclone feed pump box, cyclone underflow launders etc. They should be clean when you start your run, and cleaned out after you finish the run, including a full grind-out of the mill.

Free gold can also accumulate in the mill, either in the liners (at the Echo Bay Lupin operation when they took out the steel liners during a liner change they would put them in a secure area and grind off the surface to recover a lot of gold), or behind the liners (just ask any mill mechanic that does liner changes).

Thank you Andrew this is helpful, big problem with this material is the nugget affect when it comes to sampling. I was allowed to take 1 set of samples when I visited the mill, I took cyclone overflow and underflow, the difference was about 1.8 -1 and this is not a surprise as we know there is free gold.

This is a custom mill, I don't want to get to much into details as I don't want to smear anyone's name just yet. I'm just trying to understand whats happening and what can happen as for my one question to do with the head grade being way lower than expected grades.

Absolutely you can loose gold in the mill grinding circuit, in the classifier, in the bottom of the sand pump, behind the liners etc. particularly steel liners. When starting a new mill it will take some time before you can come up with a proper metallurgical balance, every crook and cranny, needs to to be filled before you can come up with what is in the head shows up in either the concentrate or the tailings. I have taken 40 ounces out of a small, 4' x 4' mill when I removed the liners, and any time you tear down a gold mill you have a pretty good pay day from trapped gold. Also since I am somewhat pessimistic, be sure there are no hidden traps, there on purpose, for the mill owner to make a little extra money, I have run into this, gold doe's funny things to people. My experience with custom mills is that you will likely never agree, best thing to do is come up with a good sampling system where you both can agree on a assay, sample for you, one for them, one for an umpire assay and then sell them the ore. Once you sell the ore to them you don't care what they do with it even if they want to make road gravel out of it.

Gold settling in tanks, gold room sumps or locked up in roasters This can be difficult to detect unless one goes looking for it or there is a policy of regular clean up. Similar problems occur in hydrometallurgical plants.

You may want to hire an experienced extractive metallurgist to give you a hand. This is the kind of thing I have done for over 50 years and helped many people with this kind of problems, it would likely be well worth the money.

DISCLAIMER: Material presented on the 911METALLURGIST.COM FORUMS is intended for information purposes only and does not constitute advice. The 911METALLURGIST.COM and 911METALLURGY CORP tries to provide content that is true and accurate as of the date of writing; however, we give no assurance or warranty regarding the accuracy, timeliness, or applicability of any of the contents. Visitors to the 911METALLURGIST.COM website should not act upon the websites content or information without first seeking appropriate professional advice. 911METALLURGY CORP accepts no responsibility for and excludes all liability in connection with browsing this website, use of information or downloading any materials from it, including but not limited to any liability for errors, inaccuracies, omissions, or misleading statements. The information at this website might include opinions or views which, unless expressly stated otherwise, are not necessarily those of the 911METALLURGIST.COM or 911METALLURGY CORP or any associated company or any person in relation to whom they would have any liability or responsibility.

ball mill for sale | grinding machine - jxsc mining

ball mill for sale | grinding machine - jxsc mining

Ball mill is the key equipment for grinding materials. those grinding mills are widely used in the mining process, and it has a wide range of usage in grinding mineral or material into fine powder, such as gold, ironzinc ore, copper, etc.

JXSC Mining produce reliable effective ball mill for long life and minimum maintenance, incorporate many of the qualities which have made us being professional in the mineral processing industry since 1985. Various types of ball mill designs are available to suit different applications. These could include but not be restricted to coal mining grate discharge, dry type grinding, wet mineral grinding, high-temperature milling operations, stone & pebble milling.

A ball mill grinds ores to an end product size of thirty-five mesh or finer. The feeding material to a ball mill is treated by: Single or multistage crushing and screening Crushing, screening, and/or rod milling Primary crushing and autogenous/semi-autogenous grinding.

Normal feed sizes: eighty percent of six millimeters or finer for hard rocker eighty percent of twenty-five millimeters or finer for fragile rocks (Larger feed sizes can be tolerated depending on the requirements).

The ratio of machine length to the cylinder diameter of cylindrical type ball mills range from one to three through three to one. When the length to diameter ratio is two to one or even bigger, we should better choose the mill of a Tube Mill.

Grinding circuit design Grinding circuit design is available, we experienced engineers expect the chance to help you with ore material grinding mill plant of grinding circuit design, installation, operation, and optimization. The automatic operation has the advantage of saving energy consumption, grinding media, and reducing body liner wear while increasing grinding capacity. In addition, by using a software system to control the ore grinding process meet the requirements of different ore milling task.

The ball mill is a typical material grinder machine which widely used in the mineral processing plant, ball mill performs well in different material conditions either wet type grinding or dry type, and to grind the ores to a fine size.

Main ball mill components: cylinder, motor drive, grinding medium, shaft. The cylinder cavity is partial filling with the material to be ground and the metal grinding balls. When the large cylinder rotating and creating centrifugal force, the inner metal grinding mediums will be lifted to the predetermined height and then fall, the rock material will be ground under the gravity force and squeeze force of moving mediums. Feed material to be ground enters the cylinder through a hopper feeder on one end and after being crushed by the grinding medium is discharged at the other end.

Mining Equipment Manufacturers, Our Main Products: Gold Trommel, Gold Wash Plant, Dense Media Separation System, CIP, CIL, Ball Mill, Trommel Scrubber, Shaker Table, Jig Concentrator, Spiral Separator, Slurry Pump, Trommel Screen.

Get in Touch with Mechanic
Related Products
Recent Posts
  1. chinaware ball mill cleaning

  2. jinshibao manufacturer mining ball mill machine for flotation cell

  3. problems of ball mill gold production in nepal

  4. ball mill 3d animation

  5. spur pinion with shaft for ball mill machine

  6. ball mill quotation

  7. feldspar lumps bauxite ball mill

  8. ball mills south africa

  9. quartz mining wet ball mill quartz mining growing

  10. sops for ball mill equepments

  11. 100 ball mill

  12. american grinding mill machine

  13. mobile crusher knowledge

  14. outlook for ultrafine grinding equipment

  15. milling slope on steel using ball mill bit

  16. tangible benefits new granite stone crusher manufacturer in australia

  17. india economic new sandstone magnetic separator price

  18. automatic magnetic separator manufacturer

  19. high quality basalt stone crusher in new delhi

  20. cement tube mill internals parts