ball mill work | travel and entertainment

ball mill work | travel and entertainment

{flickr|100|campaign} Ball mill is broken and ground into a pulverized coal machinery, it is important pulverized coal boiler auxiliary equipment. Coal grinding process is broken and the surface area of coal has been growing process. To add a new surface area, must overcome the binding force between the solid molecules, and thus need to consume energy. Coal grinding mill was made of coal, mainly through the crush, break and crush three ways. Process in which crushed the energy consumption of most provinces. Pulverization process of the most expensive energy. Various mill in the milling process are both the above two or three ways, but mainly depends on what kind of mill type. Many types of steel ball, grinding coal at the speed of the working parts can be divided into three types, namely low-speed mill, pulverizers and high-speed mill. Ball mill use and the use of overview: Ball is the material to be broken, and then to smash the key equipment. Ball mill is widely used in cement, silicate products, new building materials, refractory materials, fertilizer, ferrous and nonferrous metal and glass ceramics and other mineral production industries of all kinds of ores and other grind-able materials can be dry or wet grinding. Ball Mill Work Description: This machine is a horizontal cylinder rotating mechanism, outer gear, the two positions, lattice-type ball mill. Material from the feed device into the compound by the air shaft into the mill screw evenly the first warehouse, the warehouse has ladder liner or corrugated liner, built with different specifications steel ball, rotating cylinder produces centrifugal force to the ball a certain height After the fall, have severe impact on the material and abrasive. To coarse grinding of materials in the first position, after single-layer diaphragm plate into the second position, the positions are lined with flat lining, the steel ball, the material to further grinding. Powder discharged through the discharge grate plate to complete the grinding operation. Overview of structural characteristics of ball mill: Ball Mill from the feeding part, discharging the Ministry of Rotary Department, the Ministry of transmission (reducer, small transmission gear, motor, electric control), and other major components. Cast steel hollow shaft, lined with removable, rotary gear hobbing by casting process, the body inlaid cylinder liner wear, has good wear resistance. The machine running smoothly, work reliably. According to materials and methods of discharge, optional dry ball mill and wet lattice-type ball mill.

affiliate marketing Affiliate Programs alton towers best email marketing tool cheap email marketing tool chessington world of adventures comedy comment moderation data protection act disney world orlando eiffel tower paris Email Marketing email marketing tool Europe free trial email marketing tool getresponse email marketing holidays love quotes Marketing Tools motivational quotes popular tourist centres psychology quotes Quotes quotes by nelson mandela relationship quotes sex quotes submitting your corporation tax returns visit Africa visit America Visit Australia Visit Brazil Visit Canada Visit France Visit Germany Visit India Visit Italy Visit Japan Visit New Zealand Visit Russia Visit Singapore Visit Spain Visit Turkey Visit UK Visit USA Visit West Indies

ball mill design/power calculation

ball mill design/power calculation

The basic parameters used in ball mill design (power calculations), rod mill or anytumbling millsizing are; material to be ground, characteristics, Bond Work Index, bulk density, specific density, desired mill tonnage capacity DTPH, operating % solids or pulp density, feed size as F80 and maximum chunk size, productsize as P80 and maximum and finally the type of circuit open/closed you are designing for.

In extracting fromNordberg Process Machinery Reference ManualI will also provide 2 Ball Mill Sizing (Design) example done by-hand from tables and charts. Today, much of this mill designing is done by computers, power models and others. These are a good back-to-basics exercises for those wanting to understand what is behind or inside the machines.

W = power consumption expressed in kWh/short to (HPhr/short ton = 1.34 kWh/short ton) Wi = work index, which is a factor relative to the kwh/short ton required to reduce a given material from theoretically infinite size to 80% passing 100 microns P = size in microns of the screen opening which 80% of the product will pass F = size in microns of the screen opening which 80% of the feed will pass

Open circuit grinding to a given surface area requires no more power than closed circuit grinding to the same surface area provided there is no objection to the natural top-size. If top-size must be limited in open circuit, power requirements rise drastically as allowable top-size is reduced and particle size distribution tends toward the finer sizes.

A wet grinding ball mill in closed circuit is to be fed 100 TPH of a material with a work index of 15 and a size distribution of 80% passing inch (6350 microns). The required product size distribution is to be 80% passing 100 mesh (149 microns). In order to determine the power requirement, the steps are as follows:

The ball mill motorpower requirement calculated above as 1400 HP is the power that must be applied at the mill drive in order to grind the tonnage of feed from one size distribution. The following shows how the size or select thematching mill required to draw this power is calculated from known tables the old fashion way.

The value of the angle a varies with the type of discharge, percent of critical speed, and grinding condition. In order to use the preceding equation, it is necessary to have considerable data on existing installations. Therefore, this approach has been simplified as follows:

A = factor for diameter inside shell lining B = factor which includes effect of % loading and mill type C = factor for speed of mill L = length in feet of grinding chamber measured between head liners at shell- to-head junction

Many grinding mill manufacturers specify diameter inside the liners whereas othersare specified per inside shell diameter. (Subtract 6 to obtain diameter inside liners.) Likewise, a similar confusion surrounds the length of a mill. Therefore, when comparing the size of a mill between competitive manufacturers, one should be aware that mill manufacturers do not observe a size convention.

In Example No.1 it was determined that a 1400 HP wet grinding ball mill was required to grind 100 TPH of material with a Bond Work Index of 15 (guess what mineral type it is) from 80% passing inch to 80% passing 100 mesh in closed circuit. What is the size of an overflow discharge ball mill for this application?

ball mills - an overview | sciencedirect topics

ball mills - an overview | sciencedirect topics

A ball mill is a type of grinder used to grind and blend bulk material into QDs/nanosize using different sized balls. The working principle is simple; impact and attrition size reduction take place as the ball drops from near the top of a rotating hollow cylindrical shell. The nanostructure size can be varied by varying the number and size of balls, the material used for the balls, the material used for the surface of the cylinder, the rotation speed, and the choice of material to be milled. Ball mills are commonly used for crushing and grinding the materials into an extremely fine form. The ball mill contains a hollow cylindrical shell that rotates about its axis. This cylinder is filled with balls that are made of stainless steel or rubber to the material contained in it. Ball mills are classified as attritor, horizontal, planetary, high energy, or shaker.

Grinding elements in ball mills travel at different velocities. Therefore, collision force, direction and kinetic energy between two or more elements vary greatly within the ball charge. Frictional wear or rubbing forces act on the particles, as well as collision energy. These forces are derived from the rotational motion of the balls and movement of particles within the mill and contact zones of colliding balls.

By rotation of the mill body, due to friction between mill wall and balls, the latter rise in the direction of rotation till a helix angle does not exceed the angle of repose, whereupon, the balls roll down. Increasing of rotation rate leads to growth of the centrifugal force and the helix angle increases, correspondingly, till the component of weight strength of balls become larger than the centrifugal force. From this moment the balls are beginning to fall down, describing during falling certain parabolic curves (Figure 2.7). With the further increase of rotation rate, the centrifugal force may become so large that balls will turn together with the mill body without falling down. The critical speed n (rpm) when the balls are attached to the wall due to centrifugation:

where Dm is the mill diameter in meters. The optimum rotational speed is usually set at 6580% of the critical speed. These data are approximate and may not be valid for metal particles that tend to agglomerate by welding.

The degree of filling the mill with balls also influences productivity of the mill and milling efficiency. With excessive filling, the rising balls collide with falling ones. Generally, filling the mill by balls must not exceed 3035% of its volume.

The mill productivity also depends on many other factors: physical-chemical properties of feed material, filling of the mill by balls and their sizes, armor surface shape, speed of rotation, milling fineness and timely moving off of ground product.

where b.ap is the apparent density of the balls; l is the degree of filling of the mill by balls; n is revolutions per minute; 1, and 2 are coefficients of efficiency of electric engine and drive, respectively.

A feature of ball mills is their high specific energy consumption; a mill filled with balls, working idle, consumes approximately as much energy as at full-scale capacity, i.e. during grinding of material. Therefore, it is most disadvantageous to use a ball mill at less than full capacity.

Grinding elements in ball mills travel at different velocities. Therefore, collision force, direction, and kinetic energy between two or more elements vary greatly within the ball charge. Frictional wear or rubbing forces act on the particles as well as collision energy. These forces are derived from the rotational motion of the balls and the movement of particles within the mill and contact zones of colliding balls.

By the rotation of the mill body, due to friction between the mill wall and balls, the latter rise in the direction of rotation until a helix angle does not exceed the angle of repose, whereupon the balls roll down. Increasing the rotation rate leads to the growth of the centrifugal force and the helix angle increases, correspondingly, until the component of the weight strength of balls becomes larger than the centrifugal force. From this moment, the balls are beginning to fall down, describing certain parabolic curves during the fall (Fig. 2.10).

With the further increase of rotation rate, the centrifugal force may become so large that balls will turn together with the mill body without falling down. The critical speed n (rpm) when the balls remain attached to the wall with the aid of centrifugal force is:

where Dm is the mill diameter in meters. The optimum rotational speed is usually set at 65%80% of the critical speed. These data are approximate and may not be valid for metal particles that tend to agglomerate by welding.

where db.max is the maximum size of the feed (mm), is the compression strength (MPa), E is the modulus of elasticity (MPa), b is the density of material of balls (kg/m3), and D is the inner diameter of the mill body (m).

The degree of filling the mill with balls also influences the productivity of the mill and milling efficiency. With excessive filling, the rising balls collide with falling ones. Generally, filling the mill by balls must not exceed 30%35% of its volume.

The productivity of ball mills depends on the drum diameter and the relation of drum diameter and length. The optimum ratio between length L and diameter D, L:D, is usually accepted in the range 1.561.64. The mill productivity also depends on many other factors, including the physical-chemical properties of the feed material, the filling of the mill by balls and their sizes, the armor surface shape, the speed of rotation, the milling fineness, and the timely moving off of the ground product.

where D is the drum diameter, L is the drum length, b.ap is the apparent density of the balls, is the degree of filling of the mill by balls, n is the revolutions per minute, and 1, and 2 are coefficients of efficiency of electric engine and drive, respectively.

A feature of ball mills is their high specific energy consumption. A mill filled with balls, working idle, consumes approximately as much energy as at full-scale capacity, that is, during the grinding of material. Therefore, it is most disadvantageous to use a ball mill at less than full capacity.

Milling time in tumbler mills is longer to accomplish the same level of blending achieved in the attrition or vibratory mill, but the overall productivity is substantially greater. Tumbler mills usually are used to pulverize or flake metals, using a grinding aid or lubricant to prevent cold welding agglomeration and to minimize oxidation [23].

Cylindrical Ball Mills differ usually in steel drum design (Fig. 2.11), which is lined inside by armor slabs that have dissimilar sizes and form a rough inside surface. Due to such juts, the impact force of falling balls is strengthened. The initial material is fed into the mill by a screw feeder located in a hollow trunnion; the ground product is discharged through the opposite hollow trunnion.

Cylindrical screen ball mills have a drum with spiral curved plates with longitudinal slits between them. The ground product passes into these slits and then through a cylindrical sieve and is discharged via the unloading funnel of the mill body.

Conical Ball Mills differ in mill body construction, which is composed of two cones and a short cylindrical part located between them (Fig. 2.12). Such a ball mill body is expedient because efficiency is appreciably increased. Peripheral velocity along the conical drum scales down in the direction from the cylindrical part to the discharge outlet; the helix angle of balls is decreased and, consequently, so is their kinetic energy. The size of the disintegrated particles also decreases as the discharge outlet is approached and the energy used decreases. In a conical mill, most big balls take up a position in the deeper, cylindrical part of the body; thus, the size of the balls scales down in the direction of the discharge outlet.

For emptying, the conical mill is installed with a slope from bearing to one. In wet grinding, emptying is realized by the decantation principle, that is, by means of unloading through one of two trunnions.

With dry grinding, these mills often work in a closed cycle. A scheme of the conical ball mill supplied with an air separator is shown in Fig. 2.13. Air is fed to the mill by means of a fan. Carried off by air currents, the product arrives at the air separator, from which the coarse particles are returned by gravity via a tube into the mill. The finished product is trapped in a cyclone while the air is returned in the fan.

The ball mill is a tumbling mill that uses steel balls as the grinding media. The length of the cylindrical shell is usually 11.5 times the shell diameter (Figure 8.11). The feed can be dry, with less than 3% moisture to minimize ball coating, or slurry containing 2040% water by weight. Ball mills are employed in either primary or secondary grinding applications. In primary applications, they receive their feed from crushers, and in secondary applications, they receive their feed from rod mills, AG mills, or SAG mills.

Ball mills are filled up to 40% with steel balls (with 3080mm diameter), which effectively grind the ore. The material that is to be ground fills the voids between the balls. The tumbling balls capture the particles in ball/ball or ball/liner events and load them to the point of fracture.

When hard pebbles rather than steel balls are used for the grinding media, the mills are known as pebble mills. As mentioned earlier, pebble mills are widely used in the North American taconite iron ore operations. Since the weight of pebbles per unit volume is 3555% of that of steel balls, and as the power input is directly proportional to the volume weight of the grinding medium, the power input and capacity of pebble mills are correspondingly lower. Thus, in a given grinding circuit, for a certain feed rate, a pebble mill would be much larger than a ball mill, with correspondingly a higher capital cost. However, the increase in capital cost is justified economically by a reduction in operating cost attributed to the elimination of steel grinding media.

In general, ball mills can be operated either wet or dry and are capable of producing products in the order of 100m. This represents reduction ratios of as great as 100. Very large tonnages can be ground with these ball mills because they are very effective material handling devices. Ball mills are rated by power rather than capacity. Today, the largest ball mill in operation is 8.53m diameter and 13.41m long with a corresponding motor power of 22MW (Toromocho, private communications).

Modern ball mills consist of two chambers separated by a diaphragm. In the first chamber the steel-alloy balls (also described as charge balls or media) are about 90mm diameter. The mill liners are designed to lift the media as the mill rotates, so the comminution process in the first chamber is dominated by crushing. In the second chamber the ball diameters are of smaller diameter, between 60 and 15mm. In this chamber the lining is typically a classifying lining which sorts the media so that ball size reduces towards the discharge end of the mill. Here, comminution takes place in the rolling point-contact zone between each charge ball. An example of a two chamber ball mill is illustrated in Fig. 2.22.15

Much of the energy consumed by a ball mill generates heat. Water is injected into the second chamber of the mill to provide evaporative cooling. Air flow through the mill is one medium for cement transport but also removes water vapour and makes some contribution to cooling.

Grinding is an energy intensive process and grinding more finely than necessary wastes energy. Cement consists of clinker, gypsum and other components mostly more easily ground than clinker. To minimise over-grinding modern ball mills are fitted with dynamic separators (otherwise described as classifiers or more simply as separators). The working principle is that cement is removed from the mill before over-grinding has taken place. The cement is then separated into a fine fraction, which meets finished product requirements, and a coarse fraction which is returned to mill inlet. Recirculation factor, that is, the ratio of mill throughput to fresh feed is up to three. Beyond this, efficiency gains are minimal.

For more than 50years vertical mills have been the mill of choice for grinding raw materials into raw meal. More recently they have become widely used for cement production. They have lower specific energy consumption than ball mills and the separator, as in raw mills, is integral with the mill body.

In the Loesche mill, Fig. 2.23,16 two pairs of rollers are used. In each pair the first, smaller diameter, roller stabilises the bed prior to grinding which takes place under the larger roller. Manufacturers use different technologies for bed stabilisation.

Comminution in ball mills and vertical mills differs fundamentally. In a ball mill, size reduction takes place by impact and attrition. In a vertical mill the bed of material is subject to such a high pressure that individual particles within the bed are fractured, even though the particles are very much smaller than the bed thickness.

Early issues with vertical mills, such as narrower PSD and modified cement hydration characteristics compared with ball mills, have been resolved. One modification has been to install a hot gas generator so the gas temperature is high enough to partially dehydrate the gypsum.

For many decades the two-compartment ball mill in closed circuit with a high-efficiency separator has been the mill of choice. In the last decade vertical mills have taken an increasing share of the cement milling market, not least because the specific power consumption of vertical mills is about 30% less than that of ball mills and for finely ground cement less still. The vertical mill has a proven track record in grinding blastfurnace slag, where it has the additional advantage of being a much more effective drier of wet feedstock than a ball mill.

The vertical mill is more complex but its installation is more compact. The relative installed capital costs tend to be site specific. Historically the installed cost has tended to be slightly higher for the vertical mill.

Special graph paper is used with lglg(1/R(x)) on the abscissa and lg(x) on the ordinate axes. The higher the value of n, the narrower the particle size distribution. The position parameter is the particle size with the highest mass density distribution, the peak of the mass density distribution curve.

Vertical mills tend to produce cement with a higher value of n. Values of n normally lie between 0.8 and 1.2, dependent particularly on cement fineness. The position parameter is, of course, lower for more finely ground cements.

Separator efficiency is defined as specific power consumption reduction of the mill open-to-closed-circuit with the actual separator, compared with specific power consumption reduction of the mill open-to-closed-circuit with an ideal separator.

As shown in Fig. 2.24, circulating factor is defined as mill mass flow, that is, fresh feed plus separator returns. The maximum power reduction arising from use of an ideal separator increases non-linearly with circulation factor and is dependent on Rf, normally based on residues in the interval 3245m. The value of the comminution index, W, is also a function of Rf. The finer the cement, the lower Rf and the greater the maximum power reduction. At C = 2 most of maximum power reduction is achieved, but beyond C = 3 there is very little further reduction.

Separator particle separation performance is assessed using the Tromp curve, a graph of percentage separator feed to rejects against particle size range. An example is shown in Fig. 2.25. Data required is the PSD of separator feed material and of rejects and finished product streams. The bypass and slope provide a measure of separator performance.

The particle size is plotted on a logarithmic scale on the ordinate axis. The percentage is plotted on the abscissa either on a linear (as shown here) or on a Gaussian scale. The advantage of using the Gaussian scale is that the two parts of the graph can be approximated by two straight lines.

The measurement of PSD of a sample of cement is carried out using laser-based methodologies. It requires a skilled operator to achieve consistent results. Agglomeration will vary dependent on whether grinding aid is used. Different laser analysis methods may not give the same results, so for comparative purposes the same method must be used.

The ball mill is a cylindrical drum (or cylindrical conical) turning around its horizontal axis. It is partially filled with grinding bodies: cast iron or steel balls, or even flint (silica) or porcelain bearings. Spaces between balls or bearings are occupied by the load to be milled.

Following drum rotation, balls or bearings rise by rolling along the cylindrical wall and descending again in a cascade or cataract from a certain height. The output is then milled between two grinding bodies.

Ball mills could operate dry or even process a water suspension (almost always for ores). Dry, it is fed through a chute or a screw through the units opening. In a wet path, a system of scoops that turn with the mill is used and it plunges into a stationary tank.

Mechanochemical synthesis involves high-energy milling techniques and is generally carried out under controlled atmospheres. Nanocomposite powders of oxide, nonoxide, and mixed oxide/nonoxide materials can be prepared using this method. The major drawbacks of this synthesis method are: (1) discrete nanoparticles in the finest size range cannot be prepared; and (2) contamination of the product by the milling media.

More or less any ceramic composite powder can be synthesized by mechanical mixing of the constituent phases. The main factors that determine the properties of the resultant nanocomposite products are the type of raw materials, purity, the particle size, size distribution, and degree of agglomeration. Maintaining purity of the powders is essential for avoiding the formation of a secondary phase during sintering. Wet ball or attrition milling techniques can be used for the synthesis of homogeneous powder mixture. Al2O3/SiC composites are widely prepared by this conventional powder mixing route by using ball milling [70]. However, the disadvantage in the milling step is that it may induce certain pollution derived from the milling media.

In this mechanical method of production of nanomaterials, which works on the principle of impact, the size reduction is achieved through the impact caused when the balls drop from the top of the chamber containing the source material.

A ball mill consists of a hollow cylindrical chamber (Fig. 6.2) which rotates about a horizontal axis, and the chamber is partially filled with small balls made of steel, tungsten carbide, zirconia, agate, alumina, or silicon nitride having diameter generally 10mm. The inner surface area of the chamber is lined with an abrasion-resistant material like manganese, steel, or rubber. The magnet, placed outside the chamber, provides the pulling force to the grinding material, and by changing the magnetic force, the milling energy can be varied as desired. The ball milling process is carried out for approximately 100150h to obtain uniform-sized fine powder. In high-energy ball milling, vacuum or a specific gaseous atmosphere is maintained inside the chamber. High-energy mills are classified into attrition ball mills, planetary ball mills, vibrating ball mills, and low-energy tumbling mills. In high-energy ball milling, formation of ceramic nano-reinforcement by in situ reaction is possible.

It is an inexpensive and easy process which enables industrial scale productivity. As grinding is done in a closed chamber, dust, or contamination from the surroundings is avoided. This technique can be used to prepare dry as well as wet nanopowders. Composition of the grinding material can be varied as desired. Even though this method has several advantages, there are some disadvantages. The major disadvantage is that the shape of the produced nanoparticles is not regular. Moreover, energy consumption is relatively high, which reduces the production efficiency. This technique is suitable for the fabrication of several nanocomposites, which include Co- and Cu-based nanomaterials, Ni-NiO nanocomposites, and nanocomposites of Ti,C [71].

Planetary ball mill was used to synthesize iron nanoparticles. The synthesized nanoparticles were subjected to the characterization studies by X-ray diffraction (XRD), and scanning electron microscopy (SEM) techniques using a SIEMENS-D5000 diffractometer and Hitachi S-4800. For the synthesis of iron nanoparticles, commercial iron powder having particles size of 10m was used. The iron powder was subjected to planetary ball milling for various period of time. The optimum time period for the synthesis of nanoparticles was observed to be 10h because after that time period, chances of contamination inclined and the particles size became almost constant so the powder was ball milled for 10h to synthesize nanoparticles [11]. Fig. 12 shows the SEM image of the iron nanoparticles.

The vibratory ball mill is another kind of high-energy ball mill that is used mainly for preparing amorphous alloys. The vials capacities in the vibratory mills are smaller (about 10 ml in volume) compared to the previous types of mills. In this mill, the charge of the powder and milling tools are agitated in three perpendicular directions (Fig. 1.6) at very high speed, as high as 1200 rpm.

Another type of the vibratory ball mill, which is used at the van der Waals-Zeeman Laboratory, consists of a stainless steel vial with a hardened steel bottom, and a single hardened steel ball of 6 cm in diameter (Fig. 1.7).

The mill is evacuated during milling to a pressure of 106 Torr, in order to avoid reactions with a gas atmosphere.[44] Subsequently, this mill is suitable for mechanical alloying of some special systems that are highly reactive with the surrounding atmosphere, such as rare earth elements.

In spite of the traditional approaches used for gas-solid reaction at relatively high temperature, Calka etal.[58] and El-Eskandarany etal.[59] proposed a solid-state approach, the so-called reactive ball milling (RBM), used for preparations different families of meal nitrides and hydrides at ambient temperature. This mechanically induced gas-solid reaction can be successfully achieved, using either high- or low-energy ball-milling methods, as shown in Fig.9.5. However, high-energy ball mill is an efficient process for synthesizing nanocrystalline MgH2 powders using RBM technique, it may be difficult to scale up for matching the mass production required by industrial sector. Therefore, from a practical point of view, high-capacity low-energy milling, which can be easily scaled-up to produce large amount of MgH2 fine powders, may be more suitable for industrial mass production.

In both approaches but with different scale of time and milling efficiency, the starting Mg metal powders milled under hydrogen gas atmosphere are practicing to dramatic lattice imperfections such as twinning and dislocations. These defects are caused by plastics deformation coupled with shear and impact forces generated by the ball-milling media.[60] The powders are, therefore, disintegrated into smaller particles with large surface area, where very clean or fresh oxygen-free active surfaces of the powders are created. Moreover, these defects, which are intensively located at the grain boundaries, lead to separate micro-scaled Mg grains into finer grains capable to getter hydrogen by the first atomically clean surfaces to form MgH2 nanopowders.

Fig.9.5 illustrates common lab scale procedure for preparing MgH2 powders, starting from pure Mg powders, using RBM via (1) high-energy and (2) low-energy ball milling. The starting material can be Mg-rods, in which they are processed via sever plastic deformation,[61] using for example cold-rolling approach,[62] as illustrated in Fig.9.5. The heavily deformed Mg-rods obtained after certain cold rolling passes can be snipped into small chips and then ball-milled under hydrogen gas to produce MgH2 powders.[8]

Planetary ball mills are the most popular mills used in scientific research for synthesizing MgH2 nanopowders. In this type of mill, the ball-milling media have considerably high energy, because milling stock and balls come off the inner wall of the vial and the effective centrifugal force reaches up to 20 times gravitational acceleration. The centrifugal forces caused by the rotation of the supporting disc and autonomous turning of the vial act on the milling charge (balls and powders). Since the turning directions of the supporting disc and the vial are opposite, the centrifugal forces alternately are synchronized and opposite. Therefore, the milling media and the charged powders alternatively roll on the inner wall of the vial, and are lifted and thrown off across the bowl at high speed.

In the typical experimental procedure, a certain amount of the Mg (usually in the range between 3 and 10g based on the vials volume) is balanced inside an inert gas atmosphere (argon or helium) in a glove box and sealed together with certain number of balls (e.g., 2050 hardened steel balls) into a hardened steel vial (Fig.9.5A and B), using, for example, a gas-temperature-monitoring system (GST). With the GST system, it becomes possible to monitor the progress of the gas-solid reaction taking place during the RBM process, as shown in Fig.9.5C and D. The temperature and pressure changes in the system during milling can be also used to realize the completion of the reaction and the expected end product during the different stages of milling (Fig.9.5D). The ball-to-powder weight ratio is usually selected to be in the range between 10:1 and 50:1. The vial is then evacuated to the level of 103bar before introducing H2 gas to fill the vial with a pressure of 550bar (Fig.9.5B). The milling process is started by mounting the vial on a high-energy ball mill operated at ambient temperature (Fig.9.5C).

Tumbling mill is cylindrical shell (Fig.9.6AC) that rotates about a horizontal axis (Fig.9.6D). Hydrogen gas is pressurized into the vial (Fig.9.6C) together with Mg powders and ball-milling media, using ball-to-powder weight ratio in the range between 30:1 and 100:1. Mg powder particles meet the abrasive and impacting force (Fig.9.6E), which reduce the particle size and create fresh-powder surfaces (Fig.9.6F) ready to react with hydrogen milling atmosphere.

Figure 9.6. Photographs taken from KISR-EBRC/NAM Lab, Kuwait, show (A) the vial and milling media (balls) and (B) the setup performed to charge the vial with 50bar of hydrogen gas. The photograph in (C) presents the complete setup of GST (supplied by Evico-magnetic, Germany) system prior to start the RBM experiment for preparing of MgH2 powders, using Planetary Ball Mill P400 (provided by Retsch, Germany). GST system allows us to monitor the progress of RBM process, as indexed by temperature and pressure versus milling time (D).

The useful kinetic energy in tumbling mill can be applied to the Mg powder particles (Fig.9.7E) by the following means: (1) collision between the balls and the powders; (2) pressure loading of powders pinned between milling media or between the milling media and the liner; (3) impact of the falling milling media; (4) shear and abrasion caused by dragging of particles between moving milling media; and (5) shock-wave transmitted through crop load by falling milling media. One advantage of this type of mill is that large amount of the powders (100500g or more based on the mill capacity) can be fabricated for each milling run. Thus, it is suitable for pilot and/or industrial scale of MgH2 production. In addition, low-energy ball mill produces homogeneous and uniform powders when compared with the high-energy ball mill. Furthermore, such tumbling mills are cheaper than high-energy mills and operated simply with low-maintenance requirements. However, this kind of low-energy mill requires long-term milling time (more than 300h) to complete the gas-solid reaction and to obtain nanocrystalline MgH2 powders.

Figure 9.7. Photos taken from KISR-EBRC/NAM Lab, Kuwait, display setup of a lab-scale roller mill (1000m in volume) showing (A) the milling tools including the balls (milling media and vial), (B) charging Mg powders in the vial inside inert gas atmosphere glove box, (C) evacuation setup and pressurizing hydrogen gas in the vial, and (D) ball milling processed, using a roller mill. Schematic presentations show the ball positions and movement inside the vial of a tumbler mall mill at a dynamic mode is shown in (E), where a typical ball-powder-ball collusion for a low energy tumbling ball mill is presented in (F).

what is a ball mill? - monroe engineering

what is a ball mill? - monroe engineering

When most people think of milling machines, they envision a vertically oriented machine that contains rotary cutters. Traditional milling machines such as this are used extensively in the manufacturing industry to reshape workpieces. However, there are many other types of milling machines, one of which is a ball mill. What is a ball mill exactly, and how does it differ from traditional milling machines?

As shown in the adjacent image, a ball mill is a type grinding machine that uses balls to grind and remove material. It consists of a hollow compartment that rotates along a horizontal or vertical axis. Its called a ball mill because its literally filled with balls. Materials are added to the ball mill, at which point the balls knock around inside the mill.

Ball mills work by using balls to grind materials. Materials such as iron ore, pain and ceramics are added to the ball mill. Next, the ball mill is activated so that it rotates either on its vertical or horizontal axis. As the ball bill rotates, the balls bounce around while striking the enclosed material. The force of these strikes helps to grind the material into a finer, less-coarse medium.

For a ball mill to work, critical speed must be achieved. Critical speed refers to the speed at which the enclosed balls begin to rotate along the inner walls of the ball mill. If a ball mill fails to reach critical speed, the balls will remain stationary at the bottom where they have little or no impact on the material.

Ball mills differ from traditional milling machines in several ways. First, ball mills dont have a cutting tool. While traditional milling machines rely on a rotary cutting tool, ball mills leverage the force of moving balls to perform their operation. As a result, they dont need a cutting tool.

Another difference between ball mills and traditional milling machines lies in their respective function. Both ball mills and traditional milling machines are designed to remove material. However, traditional milling machines support large workpieces, whereas ball bills support materials like ore, ceramics and paint. The material is added to the ball mills compartment, at which point its exposed to the rotating balls. This forceful rotation grinds down the material into a finer, powder-like medium.

The information contained in this website is for general information purposes only. The information is provided by Monroe Engineering, LLC, Inc. (Monroe) and while we endeavour to keep the information up-to-date and correct, we make no representations or warranties of any kind, express or implied, about the completeness, accuracy, reliability, suitability or availability with respect to the website or the information, products, services, or related graphics contained on the website for any purpose. Any reliance you place on such information is therefore strictly at your own risk. All users should evaluate product suitability for each intended application of that product under actual use conditions. In no event will we be liable for any loss or damage including without limitation, indirect or consequential loss or damage, or any loss or damage whatsoever arising from this information.

bond tests | sgs

bond tests | sgs

The grinding circuit is among your largest capital investments and greatest operating costs. SGS can reduce your risk by combining different test procedures and design methodologies to ensure that you optimize this critical part of your plant.

Our philosophy is to first determine the variability of your ore using rigorous comminution testing, including Bond tests for ball and rod mills. We conduct a small number of expensive tests that require a larger sample size, such as the Bond Ball Mill Grindability Test. The results are used to calibrate a large number of less expensive tests that require only a small sample, such as the Modbond Grindability Test.

Similar to a Comparative Work Index, this test is an open circuit dry batch grindability test run in the standard Bond Ball Mill for a set time. It can be used at mesh sizes from 65 to 200 mesh (normally 100 mesh). The test requires calibration against the standard Bond Ball Mill Work Index test to estimate the Work Index. It is used to show the orebody hardness profile and to predict throughput in a ball mill circuit.

SGS created the Modbond grindability test and has a large proprietary database. The small sample size enables many tests to be conducted, resulting in extensive variability information that our experts use to efficiently design your grinding circuit.

Where W = Net power consumption in kWh/t Wi = Bond work index (either Imperial or Metric units) P= The 80% passing size of the ground product in m F = The 80% passing size of the feed in m

The test determines the Bond Impact Work Index which is used with Bonds Third Theory of Comminution to calculate net power requirements when sizing crushers*. It is also used to determine the required open-side settings (jaw crushers and gyratory crushers) or closed-side settings (cone crushers) for a given product size.

WhereOss = Open-side setting in inches Css = Closed-side settings in inches Ecc = Eccentric throw in inches P80 = Aperture through which 80% of the product will pass. Wi = Work Index

The impact apparatus consists of two pendulum-mounted hammers, mounted on two bicycle wheels so as to strike equal blows simultaneously on opposite sides of each rock specimen. The height that the pendulum is raised is increased until the energy is sufficient to break the specimen.

The test determines the Bond Rod Mill Work Index which is used with Bonds Third Theory of Comminution to calculate net power requirements when sizing ball mills*. Various correction factors may have to be applied.

ball mill: operating principles, components, uses, advantages and

ball mill: operating principles, components, uses, advantages and

A ball mill also known as pebble mill or tumbling mill is a milling machine that consists of a hallow cylinder containing balls; mounted on a metallic frame such that it can be rotated along its longitudinal axis. The balls which could be of different diameter occupy 30 50 % of the mill volume and its size depends on the feed and mill size. The large balls tend to break down the coarse feed materials and the smaller balls help to form fine product by reducing void spaces between the balls. Ball mills grind material by impact and attrition.

Several types of ball mills exist. They differ to an extent in their operating principle. They also differ in their maximum capacity of the milling vessel, ranging from 0.010 liters for planetary ball mills, mixer mills, or vibration ball mills to several 100 liters for horizontal rolling ball mills.

Im grateful for the information about using a ball mill for pharmaceutical products as it produces very fine powder. My friend is working for a pharmaceutical company and this is a good article to share with her. Its good to know that ball mills are suitable for milling toxic materials since they can be used in a completely enclosed for. Thanks for the tips!

the operating principle of the ball mill

the operating principle of the ball mill

The operating principle of the ball mill consists of following steps. In a continuously operating ball mill, feed material fed through the central hole one of the caps into the drum and moves therealong, being exposed by grinding media. The material grinding occurs during impact falling grinding balls and abrasion the particles between the balls. Then, discharge of ground material performed through the central hole in the discharge cap or through the grid (mills with center unloading the milled product and mills with unloading the milled product through the grid).

In filling mill by grinding balls on 40 50% and non-smooth liner, the outer layers slip is virtually absent, but the sliding of the inner layers one on another observed in various modes of operation mill. In a monolayer filling mill by grinding media, they rotate around their axis parallel to the drum axis of rotation. Grinding media are not subjected to a circular motion by a smooth lining, even at high speeds. In a multilayer filling mill by grinding media, depending on the rotational speed, there is possible one of the following modes the grinding media motion:

Cascade mode motion of grinding balls carried out at low drum speed. At start-up of a mill, the grinding material rotated by a certain angle and grinding balls start to move by closed path. The curved surface of natural slope is close to the plane inclined at some angle to the horizontal. This angle is equal to a limit angle of rotation. In this mode, the ground material remains in this position, but the grinding balls continuously circulate, rise on circular trajectory and cascade roll to the reference point. There is a zone or core in the central trajectory of the grinding material. This zone is inactive. In cascade mode grinding occurs as a result of crushing and abrasive actions by grinding balls. This mode used in the ball mill with a central discharge.

Waterfall mode motion of grinding media in the mill carried out by the drum rotation speed, ensures the transfer all of the grinding balls layers from a circular to a parabolic trajectory. In this mode, grinding balls rise on circular trajectory and at certain points deviate from it and make a free flight by a parabolic curve.

Weight of grinding balls should be sufficient to grind the largest pieces of crushed material. For efficient operation of ball mills necessary to observe the right balance between balls size and feed material size. If the feed material contains many large lumps and grinding balls cant crush them, it leads to a gradual accumulation them between the balls. As a result, mill suspends own operation. In these cases, need to reduce the size of crushed material or increase the size of the balls. By increasing the grinding balls size, decreases the mill working surface and reduced mill productivity. It is important to follow the degree of drum filling by grinding balls, because with a large filling rising grinding balls collide with falling balls.

Established impact of design mills and lining forms on their productivity. Mills operating with low pulp level, have better productivity than mills with high pulp level. Particularly, productivity of mills with unloading the milled product through the grid approximately 15% higher productivity mills with center unloading the milled product. Productivity mills with smooth lining less than productivity mills with ribbed liner. Mill productivity also depends on other factors: number of the drum rotations, the grinding fineness, humidity and size of the crushed material, timely removal the finished product.

Ball mills characterized by high energy consumption. When the mill idles, the energy consumption is approximately equal to the energy consumption with full mill capacity. Therefore, the work of the mill with partial load conditions is unprofitable. Energy consumption for ball mills is a function of many factors: the physical properties of the ground material its specific gravity and hardness; the degree of drum filling by grinding balls; the number of drum rotations, etc. Ball mills have low efficiency no more than 15%. Energy is mainly consumed on the wear of grinding balls and mill housing, friction; heating the material etc.

The advantages of ball mill there are large unit capacity, achievement degree of fineness corresponding to a specific surface of 5000 cm2 / g, simple construction, high reliability and well designed scientific justification.

The disadvantages of ball mills include their considerable metal consumption and deterioration grinding media, as well as a lot of noise. Most of the energy useless lost during ball mill operation, leading to low it efficiency. But even a significant specific energy consumption for grinding material compensates beneficial effect by using mill. This does not exclude a search energy saving solutions for milling, and this handled by experts from around the world.

energy use of fine grinding in mineral processing | springerlink

energy use of fine grinding in mineral processing | springerlink

Fine grinding, to P80 sizes as low as 7m, is becoming increasingly important as mines treat ores with smaller liberation sizes. This grinding is typically done using stirred mills such as the Isamill or Stirred Media Detritor. While fine grinding consumes less energy than primary grinding, it can still account for a substantial part of a mills energy budget. Overall energy use and media use are strongly related to stress intensity, as well as to media size and quality. Optimization of grinding media size and quality, as well as of other operational factors, can reduce energy use by a factor of two or more. The stirred mills used to perform fine grinding have additional process benefits, such as polishing the mineral surface, which can enhance recovery.

Fine grinding is becoming an increasingly common unit operation in mineral processing. While fine grinding can liberate ores that would otherwise be considered untreatable, it can entail high costs in terms of energy consumption and media use. These costs can be minimized by performing adequate test work and selecting appropriate operating conditions. This paper reviews fine grinding technology, research, and plant experience and seeks to shed light on ways in which operators can reduce both operating costs and the environmental footprint of their fine grinding circuit.

This paper will begin by giving an overview of fine grinding and the equipment used. It will then discuss energyproduct size relationships and modeling efforts for stirred mills in particular. The paper will go on to cover typical test work requirements, the effect of media size, and the contained energy in media. In closing, specific case studies will be reviewed.

Grinding activities in general (including coarse, intermediate, and fine grinding) account for 0.5pct of U.S. primary energy use, 3.8pct of total U.S. electricity consumption, and 40pct of total U.S. mining industry energy use. Large energy saving opportunities have been identified in grinding in particular.[1]

TableI shows a very large disparity between the theoretical minimum energy used in grinding and the actual energy used. More interestingly, a fairly large difference remains even between Best Practice grinding energy use and current energy use. This suggests that large savings in grinding energy (and associated savings in maintenance, consumables, and capital equipment needed) could be obtained by improving grinding operations.

As fine grinding is typically used on regrind applications, the feed tonnages to fine grinding circuits are small compared to head tonnages, typically 10 to 30tph. However, the specific energies are often much larger than those encountered in intermediate milling and can be as high as 60kWh/t. Total installed power in a fine grinding circuit can range from several hundred kW to several MW; for example, the largest installed Isamill has 3MW installed power.[3] This quantity is small compared to the power used by a semi-autogenous mill and a ball mill in a primary grinding circuit; a ball mill can have an installed power of up to 15MW, while installed power for a SAG mill can go up to 25MW. However, the energy used for fine grinding is still significant. Moreover, as this paper seeks to demonstrate, large energy reduction opportunities are frequently found in fine grinding.

Grinding can be classified into coarse, intermediate, and fine grinding processes. These differ in the equipment used, the product sizes attained, and the comminution mechanisms used. The boundaries between these size classes must always be drawn somewhat arbitrarily; for this paper, the boundaries are as given in TableII. As shown in the table, coarse grinding typically corresponds to using an AG or SAG mill, intermediate grinding to a ball mill or tower mill, and fine grinding to a stirred mill such as an Isamill or Stirred Media Detritor (SMD). Of course, various exceptions to these typical values can be found.

In fine grinding, a material with an F80 of less than 100m is comminuted to a P80 of 7 to 30m. (P80s of 2m are at least claimed by equipment manufacturers.) The feed is typically a flotation concentrate, which is reground to liberate fine particles of the value mineral.

The three modes of particle breakage are impact; abrasion, in which two particles shear against each other; and attrition, in which a small particle is sheared between two larger particles or media moving at different velocities. In fine grinding, breakage is dominated by attrition alone.[4] In stirred mills, this is accomplished by creating a gradient in the angular velocity of the grinding media along the mills radius.

Fine grinding is usually performed in high-intensity stirred mills; several manufacturers of these stirred mills exist. Two frequently used stirred mills include the Isamill, produced by Xstrata Technology, and the SMD, produced by Metso (Figure1). A third mill, the KnelsonDeswik mill (now the FLS stirred mill), is a relative newcomer to the stirred milling scene, having been developed through the 1990s and the early 2000s.[5] In all these mills, a bed of ceramic or sand is stirred at high speed. Ceramic media sizes in use range from 1 to 6.5mm.

The Isamill and the SMD have very similar grinding performance. Grinding the same feed using the same media, Nesset et al.[7] found that the Isamill and SMD had very similar specific energy use. Gao et al.[8] observed that an Isamill and SMD, grinding the same feed with the same media, produced very similar product particle size distributions (PSDs). This similarity in performance has also been observed in other operations.

Nevertheless, there are important differences. In the Isamill, the shaft is horizontal and the media are stirred by disks, while in the SMD, the stirring is performed by pins mounted on a vertical shaft. In an SMD, the product is separated from the media by a screen; the Isamill uses an internal centrifugation system. This means that the screens in an SMD constitute a wear part that must be replaced, while for the Isamill, the seals between the shaft and body constitute important wear parts. Liner changes and other maintenance are claimed by Xstrata Technology to be much easier than in an SMD: While an SMDs liner is removed in eight parts, the Isamills liner can be removed in two pieces, with the shell sliding off easily.[3] The KnelsonDeswik mill is top stirred and can therefore be considered to be similar to an SMD.[5]

An important difference among the Isamill, the SMD, and the KnelsonDeswik mill is that of scale. The largest Isamill installed at time of writing had 3MW of installed power; an 8MW Isamill is available, but appears not to have yet been installed.[3] The largest SMD available has 1.1MW of installed power; one 1.1-MW SMD has been installed. The next largest size SMD has 355kW of installed power.[6] Thus, several SMDs are often installed for a fine grinding circuit, while the same duty would be performed by a single Isamill. SMDs are typically arranged in series, with the product of one becoming the feed for the other. This has the advantage that each SMD in the line can have its media and operating conditions optimized to the particle size of its particular feed. The largest installed power in a KnelsonDeswik mill is 699kW[5]; this places it in an intermediate position between the 355-kW and 1.1-MW SMDs.

In 2012, FLSmidth reported that it had acquired the KnelsonDeswik mill; the mill is now known as the FLSmidth stirred mill. An FLSmidth stirred mill will be installed to perform a copper concentrate regrind in Mongolia.[9] It is speculated that the mill will continue to be scaled up under its new owners to allow it to effectively compete against the SMD and Isamill.

Gravity-induced stirred (GIS) mills include the Tower mill, produced by Nippon Eirich, and the Vertimill, produced by Metso. Grinding to below 40m in GIS mills or ball mills is usually not recommended. In their product literature, Metso give 40m as the lower end of the optimal P80 range for Vertimills.[6] At lower product sizes, both tower mills and ball mills will overgrind fines. At Mt. Isa Mines, a GIS mill fed with material of F80 approximately 50m lowered the P80 size by only 5 to 10m, at the same time producing a large amount of fines.[10] Similarly, in ball mills, it is known that grinding finer than approximately 40m will result in overgrinding of fines as well as high media consumption. However, it must be noted that the product size to which a mill can efficiently grind depends on the feed material, the F80, and media type and size. A Vertimill has been used to grind to sizes below 10m.[11]

The phenomenon of overgrinding is largely the result of using media that are too large for the product size generated. The smallest ball size typically charged into ball mills and tower mills is inch (12.5mm), although media diameters as small as 6mm have been used industrially in Vertimills.[11]

In a laboratory study by Nesset et al.,[7] a GIS mill charged with 5-mm steel shot, and with other operating conditions similarly optimized, achieved high energy efficiencies when grinding to less than 20m. This appears to qualitatively confirm the notion that fine grinding requires smaller media sizes. In the case of the Nesset study, the power intensity applied to the laboratory tower mill was lowthat is, the shaft was rotated slowly in order to obtain this high efficiency, leading to low throughput. This suggests that charging GIS mills with small media may not be practicable in plant operation.

Millpebs have been used as grinding media to achieve fine grinding in ball mills. These are 5- to 12-mm spherical or oblong cast steel pellets, charged into ball mills as a replacement of, or in addition to, balls. While Millpebs can give significantly lower energy use when grinding to finer sizes, they also can lead to high fines production and high media use.

Millpebs were tested for fine grinding at the Brunswick concentrator. The regrind ball mills at the concentrator used 25-mm slugs to produce a P80 of 28m. In one of the regrind mills, the slugs were replaced by Millpebs; these were able to consistently maintain a P80 of 22m while decreasing the power draw by 20pct. However, media use increased by 50pct and the production of fines of less than 16m diameter increased by a factor of 5.[12] The observed drop in specific energy may be due to the fact that Millpebs had smaller average diameters than the slugs and so were more efficient at grinding to the relatively small product sizes required. It is therefore unclear whether the performance of Millpebs would be better than that of conventional 12-mm steel balls. To the best of the authors knowledge, no performance comparison between Millpebs and similarly sized balls has been performed.

A host of other technologies exist to produce fine grinding, including jet mills, vibrating mills, roller mills, etc. However, none of these technologies has reached the same unit installed power as stirred mills. For example, one of the largest vibrating mills has an installed power of 160kW.[13] Therefore, these mills are considered as filling niche roles and are not treated further in this review. A fuller discussion of other fine grinding technologies can be found in a review by Orumwense and Forssberg.[14]

Neese et al.[15] subjected 50- to 150-m sand contaminated with oil to cleaning in a stirred mill in the laboratory. The mill operated at low stress intensities: A low speed and small-size media (200- to 400-m quartz or steel beads) were used. These conditions allowed the particles to be attrited without being broken. As a result, a large part of the oil contaminants was moved to the 5-m portion of the product. This treatment may hold promise as an alternative means of processing bituminous sands, for example, in northern Alberta.

The Albion process uses ultrafine grinding to enhance the oxidation of sulfide concentrates in treating refractory gold ores.[16] In the process, the flotation concentrate is ground to a P80 of 10 to 12m. The product slurry is reacted with oxygen in a leach tank at atmospheric pressure; limestone is added to maintain the pH at 5 to 5.5. The leach reaction is autothermal and is maintained near the slurry boiling point. Without the fine grinding step, an autoclave would be required for the oxygen leaching process. It is hypothesized that the fine grinding enhances leach kinetics by increasing the surface area of the particles, as well as by deforming the crystal lattices of the particles.

Numerous researchers, for example, Buys et al.,[17] report that stirred milling increases downstream flotation recoveries by cleaning the surface of the particles. The grinding media used in stirred mills are inert, and therefore corrosion reactions, which occur with steel media in ball mills, are not encountered. Corrosion reactions change the surface chemistry of particles, especially with sulfide feeds, and hamper downstream flotation.

Further increases in flotation recoveries are obtained by limiting the amount of ultrafine particles formed; stirred mills can selectively grind the larger particles in the feed with little increase in ultrafines production. Ultrafine particles are difficult to recover in flotation.

In intermediate grinding to approximately 75m, the Bond equation (Eq. [1]) is used to relate feed size, product size, and mechanical energy applied. Below 75m, correction factors can be applied to extend its range of validity.[4]

No general work index formula governing energy use over a range of conditions, like the Bond equation for intermediate grinding, has yet been found for the fine grinding regime. Instead, the work-to-P80 curve is determined in the laboratory for each case. The energy use usually fits an equation of the form

Signature plot (specific energy vs P80 curve) for Brunswick concentrator Zn circuit ball mill cyclone underflow; F80=63m. The plots give results for grinding the same feed using different mills and media. After Nesset et al.[7]

Values for the exponent k have been found in the range 0.7 to 3.5, meaning that the work to grind increases more rapidly as grind size decreases than in intermediate grinding. The specific energy vs product size curve has a much steeper slope in this region than in intermediate grinding.

The values of k and A are specific to the grinding conditions used in the laboratory tests. Changes in feed size, media size distribution, and in other properties such as media sphericity and hardness can change both k and A, often by very large amounts. Media size and F80 appear to be the most important determinants of the signature plot equation.

The connections (if any) between k and A and various operating conditions remain unknown. Because of the relatively recent advent of stirred milling in mineral processing, fine grinding has not been studied to the same extent as grinding in ball mills (which of course entail much larger capital and energy expenditures in any case). One of the research priorities in the field of stirred milling should be the investigation of the effects of F80 and media size on the position of the signature plots. If analogous formulas to the Bond ball mill work formula and the Bond top ball size formula can be found, the amount of test work required for stirred milling would be greatly reduced.

Larson et al.[19] found that when specific energy is plotted against the square of the percent particles in the product passing a given size (a proxy for particle surface area), a straight line is obtained. This is demonstrated in Figure3.

In contrast to the conventional signature plot, this function gives zero energy at the mill feed. It is therefore hypothesized that if a squared function plot is obtained by test work for one feed particle size, the plot for another feed particle size can be obtained simply by changing the intercept of the line while keeping the slope the same. Therefore, the squared function plot allows the effect of changes in both F80 and P80 to be modeled.

While the Squared Function Plot is intriguing, experimental validation of its applicability has not yet been published. It nevertheless remains an interesting topic for further investigation and if validated may be used in the future as an alternative measure of specific energy.

A similar analysis has been performed by Musa and Morrison,[21] who developed a model to determine the surface area within each size fraction of mill product. They defined a marker size below which 70 to 80pct of the product surface area was contained; the marker size thus served as a proxy for surface area production. Specific energy use was then defined as kWh of power per the tonne of new material generated below the marker size. Musa and Morrison found that by defining specific energy in this way, it was possible to accurately predict the performance of full-scale Vertimills and Isamills from laboratory tests.

Blecher and coworkers[22,23] found that stress intensity combines the most important variables determining milling performance. Stress intensity for a horizontal stirred mill, with media much harder than the mineral to be ground, is defined as in Eq. [4].

Note that the stress intensity is strongly sensitive to changes in media diameter (to the third power), is less sensitive to stirrer tip speed (to the second power), and is relatively insensitive to media and slurry density.

For vertical stirred mills such as the SMD and tower mill, both SIs and SIg are non-zero. For horizontal stirred mills such as the Isamill, net gravitational SI is zero due to symmetry along the horizontal axis. Therefore, for horizontal stirred mills, only SIs need be taken into consideration.

Kwade and coworkers noted that, at a given specific energy input, the product P80 obtainable varies with stress intensity and passes through a minimum. Product size at a given energy input can be viewed as a measure of milling efficiency; therefore, milling efficiency reaches a maximum at a single given stress intensity. This idea was experimentally validated by Jankovic and Valery (Figure 4).[25]

The stress intensity is defined by parameters that are independent of mill size or type. According to Jankovic and Valery,[25] once the optimum SI has been determined in one mill for a given feed, the same SI should also be the point of optimum efficiency in any other mill treating that feed. Therefore, the optimum SI need only be determined in one mill (e.g., a small test mill); the operating parameters of a full-scale mill need only be adjusted to produce the optimum SI.

Stress frequency multiplied by stress intensity is equal to mill power; therefore, stress intensity could in theory be used to predict mill specific energy. However, to the authors knowledge, a comprehensive model linking stress intensity, stress frequency, and specific energy has not yet been developed. Therefore, there is not yet any direct link between stress intensity and specific energy.

The definition of SIs as given in Eq. [4] is valid only for cases where the grinding media are much harder than that of the material ground (for example, the grinding of limestone with glass beads). Becker and Schwedes[26] determined that, in a collision between media and a mineral particle, the fraction of energy transferred to the product is given by Eq. [6]:

To maintain high efficiency in milling, the media must be chosen so as to be much harder (higher Youngs modulus) than the product material, keeping E p,rel close to unity. Where the Youngs modulus of the product is similar to that of the media, much of the applied energy goes into deformation of the media instead of that of the particle to be ground. The energy used to deform the media is lost, lowering the amount of energy transferred to the product. This fact explains why steel media, with a relatively low Youngs modulus, tend to perform poorly in stirred milling, even though the media are much more dense than silica or alumina media.

The previous sections indicated that stress intensity is independent from individual millsi.e., the optimal stress intensity when using Mill A will also be the optimal stress intensity when using Mill B. However, this does not seem to be the case when actually scaling up mills.

Four-liter Isamills are commonly used for grindability test work. It can be assumed that operating parameters of the test mill (including media type, media size, and slurry density) are adjusted so far as possible to give the optimum SI. These parameters are then used in the full-scale mill as well. However, the 4-L test mills have a tip speed of approximately 8m/s, while full-scale Isamills have tip speeds close to 20m/s.[27] If the same media size, media density, and slurry density are used in the test mill as in the full-scale mill, the stress intensity of the full-scale mill will be approximately 6.25 times larger than that of the test mill. This implies that the full-scale mill is operating outside of the optimum SI and will be grinding less efficiently. That is to say that the operating point of the full-scale mill will be above the signature plot determined by test work.

In reality, however, the operating points of full-scale stirred mills are generally found to lie on the signature plots generated in test work.[19] Therefore, the full-scale mills and test mills have the same milling efficiency, even though the full-scale mill operates at a different stress intensity than the test mill.

This question remains unresolved. One possible answer arises from the observation that two of the P80 vs SI curves in Figure4 appear to have broad troughs, covering almost an order of magnitude change in SI. In this case, even a sixfold increase in SI might not create a noticeable difference in performance, considering experimental and measurement error.

Product size vs stress intensity at three different specific energies for a zinc regrind. Note optimum stress intensity at which the lowest product size is reached. Figure used with permission from Jankovic and Valery[25]

The SMD test unit appears from photographs to have a bed depth of around 30cm, while the full-scale SMD355 has a bed depth of approximately one meter. This represents a change in the gravitational stress intensity of almost two orders of magnitude. As has been previously noted, however, laboratory and full-scale SMDs scale-up with a scale-up factor of approximately unity, with no apparent change in the optimum stress intensity. This observation suggests that the gravitational stress intensity, SIg, is unimportant in SMDs compared to the stirring stress intensity, SIs. By contrast, in GIS mills, where full-size units have bed depths of ten meters or more, gravitational stress intensity can be expected to be much more important in full-size units than in test units, adding a complicating factor to GIS mill scale-up.

Factorial design experiments were performed by Gao et al.[28] and Tuzun and Loveday[29] to determine the effect of various operating parameters on the power use of laboratory mills. Power models were determined giving the impact of different parameters as power equations with linear and nonlinear terms. The derived models did not appear to be applicable to mills other than the particular laboratory units being studied.

In ball milling, the Bond ball mill work index can be used to determine specific energy at a range of feed and product sizes. The Bond top size ball formula can be used to estimate the media size required. No such standard formulas exist in fine grinding. Energy and media parameters must instead be determined in the laboratory for every new combination of operating conditions such as feed size, media size, and media type.

For the Isamill, test work is usually performed with a 4-L bench-scale Isamill. Approximately 15kg of the material to be ground is slurried to 20pct solid density by volume. The slurry is then fed through the mill and mill power is measured. The products PSD is measured, additional water is added if needed, and the material is sent through the mill again. This continues until the target P80 is reached; typically, there will be 5 to 10 passes through the mill. The test work will produce a signature plot and media consumption data as the deliverables.

In contrast to laboratory-scale testing for ball mills and AG/SAG mills, test work results for stirred mills can be used for sizing full-size equipment with a scale-up factor close to one. Larson et al.[19,20] found a scale-up factor for the Isamill of exactly 1, while Gao et al.[8] imply that the scale-up factor for SMDs is 1.25.

A common error in test work is using monosize media (e.g., fresh 2-mm media loaded into in the mill) as opposed to aged media with a distribution of particle sizes. The aged media will grind the smaller feed particles more efficiently. Therefore, using fresh media will give a higher specific energy than in reality.[30]

Another pitfall is coarse holdup in the mill. If the mill is not sufficiently flushed, coarse particles will be kept inside the mill. The mill product then appears finer than it in reality is. This leads to lower estimates of specific energy than reality.[19]

In ball milling, the product particle size distribution (PSD) can usually be modeled as being parallel to the feed PSD on a log-linear plot.[4] When grinding to finer sizes in ball mills, the parallel PSDs mean that large amounts of ultrafine particles are produced. This consumes a large amount of grinding energy while producing particles which are difficult to recover in subsequent processing steps such as flotation.

As shown in the figure, at the left end of the graph, the product PSD is very close to the feed PSD; at the right, the two PSDs are widely spaced. This indicates that the mill is efficiently using its energy to break the top size particles and is spending very little energy on further grinding of fine particles. Thus, the overall energy efficiency of the fine grinding can be expected to be good. As a bonus, the tighter PSD makes control of downstream processes such as flotation easier.

In an experimental study, Jankovic and Sinclair subjected calcite and silica to fine grinding in a laboratory pin stirred mill, a Sala agitated mill (SAM), and a pilot tower mill. The authors found that for each mill, the PSD of the product was narrower (steeper) than that of the feed. In addition, when grinding to P80s below approximately 20m in any of the three mills tested, the PSD became more narrow (as measured by P80/P20 ratio) as the P80 decreased. (When the width of the PSD was calculated using an alternative formula, the PSD was only observed to narrow with decreasing P80 when using the pin stirred mill.) The authors concluded that the width of the PSD was strongly affected by the material properties of the feed, while not being significantly affected by the media size used.[32]

In stirred milling, the most commonly used media are ceramic balls of 1 to 5mm diameter. The ceramic is usually composed of alumina, an alumina/zirconia blend, or zirconium silicate. Ceramic media exist over a wide range of quality and cost, with the lower quality/cost ceramic having a higher wear rate than higher quality/cost ceramic. Other operations have used sand as media, but at the time of writing, only two operations continue to use sand.[8,27,33] Mt Isa Mines has used lead smelter slag as media; however, it is now using sand media.[10,27] Mt Isa is an exception in its use of slag, as a vast majority of operations do not have a smelter on-site to provide a limitless supply of free grinding media. However, in locations where slag is available, it should be considered as another source of media.

Media use in fine grinding is considered to be proportional to the mechanical energy applied. Typical wear rates and costs are given in TableIII and Figure6; these figures can of course vary significantly from operation to operation.

Contained energy refers to the energy required to produce and transport the media, and is distinct from the mechanical (electrical) energy used to drive the mill. Hammond and Jones estimated the contained energy in household ceramics (not taking account of transportation).[39] Hammond and Jones estimates range from 2.5 to 29.1MJ/kg, with 10MJ/kg for general ceramics and 29MJ/kg for sanitary ceramics. Given that ceramic grinding media require very good hardness and strength, especially compared to household ceramics, it is appropriate to estimate its contained energy at the top end of Hammond and Jones range, at 29MJ/kg.

Using 29MJ/kg for the contained energy of ceramic media and a wear rate of 35g/kWh of mechanical energy gives a contained energy consumption of 0.28kWh contained per kWh of mechanical energy applied. A wear rate of 7g/kWh gives a contained energy consumption of 0.06kWh contained per kWh of mechanical energy applied. Therefore, 6 to 20pct of the energy use in fine grinding using ceramic media can be represented by contained energy in the grinding media itself.

Sand media have much lower contained energy than ceramic media as the media must simply be mined or quarried rather than manufactured. Hammond and Jones report a contained energy of 0.1MJ/kg. Blake et al.[36] reported that switching a stirred mills media from sand to ceramic results in a mechanical energy savings of 20pct. Therefore, using sand rather than ceramic media would produce savings in contained energy, but would cost more in mechanical energy. Likewise, Davey[40] suggests that poor-quality media will increase mechanical energy use in stirred milling. It is speculated that this is due to the lower sphericity of sand media. On the other hand, the work of Nesset et al.[7] suggests that the energy use between ceramic and sand media of the same size is the same. Slag media, where a smelter is on-site, would probably have the lowest contained energy consumption of the different media types. There is very little transportation, and for accounting purposes, almost no energy has gone into creating the media as the granulated slag is a by-product of smelter operation.

Becker and Schwedes[41] point out that with poor-quality media, a significant part of the product will consist of broken pieces of media, which will affect the measured product PSD. Clearly, more information on the relationships between contained energy in media and media wear rates is desirable.

Of the different operating parameters for stirred mills, media size probably has the biggest influence on overall energy consumption. The appropriate media size for a mill appears to be a function of the F80 and P80 required. The grinding media must be large enough to break up the largest particles fed to the mill and small enough to grind the material to the product fineness desired. As demonstrated by the experience of Century mine, an inappropriate media size choice can result in energy consumption double that of optimum operation.[8]

In their laboratory study, Nesset et al.[7] varied a number of operating parameters for stirred mills and identified media size as having the largest impact on energy use. It was also noted that the trials which produced the sharpest product PSD were also the ones which resulted in the lowest specific energy use.

Gao et al.[8] report that at Century mine, the grinding media in SMDs performing regrind duty were changed from 1 to 3mm. This resulted in a drop in energy use of approximately 50pct; the signature plot shifted significantly downward (Figure7).

Figure8 shows the product PSD for laboratory SMD tests using 1- and 3-mm media. The PSD for the test using 1-mm media shows that the SMD produced a significant amount of fines (20pct below 4m). The mill also had difficulty breaking the top size particlesthe 100pct passing size appears to be almost the same for both the feed and the product. In contrast, the PSD using 3-mm media shows less fines production (20pct below 9m) and effective top size breakage, with all the particles above 90m broken. This is in line with the observation of Nesset et al.[7] that low energy use is associated with tight product size distributions.

Gao et al.[38] tested copper reverberatory furnace slag (CRFS, SG 3.8) and heavy media plant rejects (HMPR, SG 2.4) in a laboratory stirred mill at two sizes: 0.8/+0.3mm, and 1.7/+0.4mm. For both CRFS and HMPR, the smaller size media gave a lower specific energy than the larger size media. At the same size, both CRFS and HMPR had similar specific energy use. However, the CRFS ground the material much faster than HMPR. Possibly, this was due to its higher density.

Data on F80, P80, and media size were compiled from the literature in order to allow benchmarking against existing operations. The sources are listed in Table IV. F80 and P80 were plotted against media size; the results are given in Figure9.

F80 plotted against media size (blue diamonds); P80 plotted against media size (red crosses). Century UFG=Century ultrafine grind; Century Regr.=Century regrind. Data are taken from Case studies table (Color figure online)

It can be seen from the figure that as the P80 achieved decreases, the media size does as well, from 3mm to achieve 45m to 1mm to achieve under 10m. The F80 decreases with media size in a similar way, from 90m at 3mm to 45m at 1mm. Dotted lines have been added to Figure7 to define the region of operation of mills; these delimit a zone in which the stirred mill can be expected to operate efficiently.

In general, for a particular media size, limits on both F80 and P80 must be respected. For example, the figure suggests that a mill operating with an F80 of 100m should use 3-mm media, while a mill grinding to below 10m would need to use 1-mm media. To reduce a feed of 90m F80 to 10m P80, Figure9 suggests that comminution be done in two stages (two Isamills or SMDs in series) for optimal efficiency. The first stage would grind the feed from 90m to perhaps 45m using 3-mm media, while the second would grind from 45 to 10m using 1- or 2-mm media.

A number of opportunities exist to reduce the energy footprint of fine grinding mills. There are no general formulas, such as the Bond work formula and Bond top size ball formula in ball milling, to describe the performance of stirred mills. Therefore, improvement opportunities must be quantified by performing appropriate test work.

In addition to obtaining the signature plot, the specific energy as a function of new surface area should be determined during test work. This could be done either by the method of Larsen or by that of Musa and Morrison. Defining specific energy as a function of new surface area may constitute a superior means of predicting the performance of full-scale mills, as opposed to defining specific energy as a function of feed tonnage.

Media size should be chosen with care. It is recommended that test work be done with several media sizes in order to locate the stress intensity optimum. Media size can be benchmarked against other operations using Figure9.

There are indications that lower-quality media, apart from degrading faster, require more mechanical energy for grinding due to factors such as lower sphericity. It is recommended to perform test work using media of different quality to determine the effect of media quality on energy use. Slag and sand media may also be considered. Subsequently, a trade-off study involving media cost, electricity cost, improvement in energy efficiency, and contained energy in media should be performed to identify the best media from an economic and energy footprint standpoint.

D. Rahal, D. Erasmus, and K. Major: KnelsonDeswick Milling Technology: Bridging the Gap Between Low and High Speed Stirred Mills, Paper presented at the 43rd Canadian Mineral Processors Meeting, Ottawa, 2011.

Metso: Stirred milling: Vertimill grinding mills and Stirred Media Detritor (product brochure), 2013, available at http://www.metso.com/miningandconstruction/MaTobox7.nsf/DocsByID/F58680427E2A748F852576C4005210AC/$File/Stirred_Mills_Brochure-2011_LR.pdf, accessed April 21, 2013.

J. Nesset, P. Radziszewski, C. Hardie, and D. Leroux: Assessing the Performance and Efficiency of Fine Grinding Technologies, Paper presented at the 38th Canadian Mineral Processors Meeting, Ottawa, 2006.

FLSmidth: Acquisition enhances our precious metals offerings, 2012, FLSmidth eHighlights April 2012, available at http://www.flsmidth.com/en-US/eHighlights/Archive/Minerals/2012/April/Acquisition+enhances+our+precious+metals+offerings, accessed 17 April 2013.

S. Buys, C. Rule, and D. Curry: The Application of Large Scale Stirred Milling to the Retreatment of Merensky Platinum Tailings, Paper presented at the 37th Canadian Mineral Processors Meeting, Ottawa, 2005.

D. Curry, M. Cooper, J. Rubenstein, T. Shouldice, and M. Young: The Right Tools in the Right Place: How Xstrata Nickel Australasia Increased Ni Throughput at Its Cosmos Plant, Paper presented at the 42nd Canadian Mineral Processors conference, Ottawa, 2010.

G. Davey: Fine Grinding Applications Using the Metso Vertimill Grinding Mill and the Metso Stirred Media Detritor (SMD) in Gold Processing, Paper presented at the 38th Canadian Mineral Processors Meeting, Ottawa, 2006.

Get in Touch with Mechanic
Related Products
Recent Posts
  1. 3200x4500 ball mill

  2. ball mill micronizer broda

  3. cost of production for opencast metal mining in south africa

  4. kathmandu new soft rock ceramic ball mill for sale

  5. types of liners in ball mill

  6. high end large magnetite crushing production line for sale in faisalabad

  7. feldspar lumps bauxite ball mill

  8. ball mills south africa

  9. quartz mining wet ball mill quartz mining growing

  10. sops for ball mill equepments

  11. high end coal milling production line in zimbabwe

  12. efficient portable basalt milling production line sell in hyderabad

  13. concretize crusher hire in kent

  14. biomass briquette machine video

  15. gold milling plant zimbabwe suppliers

  16. secondary impact crusher 1b 3 model kap

  17. cylindrical grinding services small bores

  18. economic large construction waste ceramic ball mill for sale in bhadgaon

  19. hydraulic mobile crushing

  20. stone crusher plant pdf