ball mill maintenance & installation procedure

ball mill maintenance & installation procedure

Am sure your BallMill is considered the finest possible grinding mill available. As such you will find it is designed and constructed according to heavy duty specifications. It is designed along sound engineering principles with quality workmanship and materials used in the construction of the component parts. YourBallMill reflects years of advancement in grinding principles, materials, and manufacturing techniques. It has been designed with both the operators and the erectors viewpoints in mind. Long uninterrupted performance can be expected from it if the instructions covering installation and maintenance of the mill are carried out. You may be familiar with installing mills of other designs and manufacture much lighter in construction. YourBallis heavy and rugged. It should, therefore, be treated accordingly with due respect for its heavier construction.

The purpose of this manual is to assist you in the proper installation and to acquaint you a bit further with the assembly and care of this equipment. We suggest that these instructions be read carefully and reviewed by everyone whenever involved in the actual installation and operation of the mill. In reading these general instructions, you may at times feel that they cover items which are elementary and perhaps not worthy of mention; however in studying hundreds of installations, it has been found that very often minor points are overlooked due to pressure being exerted by outside influences to get the job done in a hurry. The erection phase of this mill is actually no place to attempt cost savings by taking short cuts, or by-passing some of the work. A good installation will pay dividends for many years to come by reduced maintenance cost.With the modern practice of specialized skills and trades, there is often a line drawn between responsibilities of one crew of erectors and another. Actually the responsibility of installation does not cease with the completion of one phase nor does it begin with the starting of another. Perhaps a simple rule to adopt would be DO NOT TAKE ANYTHING FOR GRANTED. This policy of rechecking previously done work will help guarantee each step of the erection and it will carefully coordinate and tie it into subsequent erection work. To clarify or illustrate this point, take the example of concrete workers completing their job and turning it over to the machinist or millwright. The latter group should carefully check the foundation for soundness and correctness prior to starting their work.

Sound planning and good judgement will, to a great extent, be instrumental in avoiding many of the troublesome occurrences especially at the beginning of operations. While it is virtually impossible to anticipate every eventuality, nevertheless it is the intention of this manual to outline a general procedure to follow in erecting the mill, and at the same time, point out some of the pitfalls which should be avoided.

Before starting the erection of the mill, adequate handling facilities should be provided or made available, bearing in mind the weights and proportions of the various parts and sub-assemblies. This information can be ascertained from the drawings and shipping papers.

The gearing, bearings, and other machined surfaces have been coated with a protective compound, and should be cleaned thoroughly with a solvent, such as Chlorothene, (made by Dow Chemical). Judgement should be exercised as to the correct time and place for cleaning the various parts. Do not permit solvents, oil or grease to come in contact with the roughened top surfaces of the concrete foundation where grouting is to be applied; otherwise proper bonding will not result.

After cleaning the various parts, the gear and pinion teeth, trunnion journals and bearings, shafting and such, should be protected against rusting or pitting as well as against damage from falling objects or weld splatter. All burrs should be carefully removed by filing or honing.

Unless otherwise arranged for, the mill has been completely assembled in our shop. Before dismantling, the closely fitted parts were match marked, and it will greatly facilitate field assembly to adhere to these match marks.

The surfaces of all connecting joints or fits, such as shell and head flanges, trunnion flanges, trunnion liner and feeder connecting joints, should be coated with a NON-SETTING elastic compound, such as Quigley O-Seal, or Permatex to insure against leakage and to assist in drawing them up tight. DO NOT USE WHITE LEAD OR GREASE.

Parts which are affected by the hand of the mill are easily identified by referring to the parts list. In general they include the feeder, feed trunnion liner, discharge trunnion liner if it is equipped with a spiral, spiral type helical splitter, and in some cases the pan liners when they are of the spiral type. When both right and left hand mills are being assembled, it is imperative that these parts which involve hand be assembled in the correct mill.

Adequate foundations for any heavy equipment, and in particular grinding mills, are extremely important to assure proper operation. The foundation should preferably be in one piece, that is, with a reinforced slab footing (so called mat) extending under both trunnion bearing foundations as well as the pinion bearing foundation. If possible or practical, it should be extended to include also the motor and drive. With this design, in the event of some movement, the mill and foundation will tend to move as a unit. ANY SLIGHT SETTLING OF FOUNDATIONS WILL CAUSE BEARING AND GEAR MISALIGNMENT, resulting in excessive wear and higher maintenance costs. It has been found that concrete foundations on a weight basis should be at least 1 times the total weight of the grinding mill with its grinding media.

Allowable bearing pressure between concrete footings and the soil upon which the foundation rests should first be considered. The center of pressure must always pass through the center of the footing. Foundations subject to shock should be designed with less unit pressure than foundations for stationary loads. High moisture content in soils reduces the amount of allowable specific pressure that the ground can support. The following figures may be used for preliminary foundation calculations.

Portland cement mixed with sand and aggregate in the proper proportions has come to be standard practice in making concrete. For general reference cement is usually shipped in sacks containing one cubic foot of material. A barrel usually holds 4 cubic feet. Cement will deteriorate with age and will quickly absorb moisture so it should be stored in a dry place. For best results the sand and gravel used should be carefully cleaned free of humus, clay, vegetal matter, etc.

Concrete may be made up in different mixtures having different proportions of sand and aggregate. These are expressed in parts for example a 1:2:4 mixture indicates one bag of cement, 2 cubic feet of sand, and 4 cubic feet of gravel. We recommend a mixture of 1:2:3 for ball mill and rod mill foundations. The proper water to sand ratio should be carefully regulated since excess water increases the shrinkage in the concrete and lends to weaken it even more than a corresponding increase in the aggregate. Between 5 to 8 gallons of water to a sack of cement is usually recommended, the lower amount to be used where higher strength is required or where the concrete will be subject to severe weathering conditions.

Detailed dimensions for the concrete foundation are covered by the foundation plan drawing submitted separately. The drawing also carries special instructions as to the allowance for grouting, steel reinforcements, pier batter, foundation bolts and pipes. During concrete work, care should be taken to prevent concrete entering the pipes, surrounding the foundations bolts, which would limit the positioning of the bolts when erecting the various assemblies. Forms should be adequately constructed and reinforced to prevent swell, particularly where clearance is critical such as at the drive end where the gear should clear the trunnion bearing and pinion bearing piers.

For convenience in maintenance, the mill foundations should be equipped with jacking piers. These will allow the lifting of one end of the mill by use of jacks in the event maintenance must be carried out under these conditions.

Adequate foundations for any heavy equipment, and in particular Marcy grinding mills, are extremely important to assure proper operation of that equipment. Any slight settling of foundations will cause bearing and gear misalignment, resulting in excessive wear and higher maintenance costs. It has been found that concrete foundations on a weight basis should be approximately 1 times the total weight of the grinding mill with its grinding media.

Allowable bearing pressure between concrete footings and the soil upon which the foundation rests should first be considered. The center of pressure must always pass through the center of the footing. Foundations subject to shock should be designed with less unit pressures than foundations for stationary loads. High moisture content in soils reduces the amount of allowable pressure that that material can support. The following figures may be used for quick foundation calculations:

Portland cement mixed with sand and aggregate in the proper proportions has come to be standard practice in making concrete. For general reference cement is usually shipped in sacks containing one cubic foot of material. A barrel usually consists of 4 cubic feet. Cement will deteriorate with age and will quickly absorb moisture so it should be stored in a cool, dry place. The sand and gravel used should be carefully cleaned for best results to be sure of minimizing the amount of sedimentation in that material.

Concrete may be made up in different mixtures having different proportions of sand and aggregate. These are expressed in parts for example a 1:2:4 mixture indicates one bag of cement, 2 cubic feet of sand, and 4 cubic feet of gravel. We recommend a mixture of 1:2:3 for ball mill and rod mill foundations. The proper water to sand ratio should be carefully regulated since excess water will tend to weaken the concrete even more than corresponding variations in other material ratios. Between 5 to 8 gallons of water to a sack of cement is usually recommended, the lower amount to be used where higher strength is required or where the concrete will be subject to severe weathering conditions.

We recommend the use of a non-shrinking grout, and preferably of the pre-mixed type, such as Embeco, made by the Master Builders Company of Cleveland, Ohio. Thoroughly clean the top surfaces of the concrete piers, and comply with the instructions of the grouting supplier.

1. Establish vertical and horizontal centerline of mill and pinion shaftagainst the effects of this, we recommend that the trunnion bearing sole plate be crowned so as to be higher at the center line of the mill. This is done by using a higher shim at the center than at the endsand tightening the foundation bolts of both ends.

After all shimming is completed, the sole plate and bases should be grouted in position. Grouting should be well tamped and should completely fill the underside of the sole plate and bases. DO NOT REMOVE THE SHIMS AFTER OR DURING GROUTING. When the grout has hardened sufficiently it is advisable to paint the top surfaces of the concrete so as to protect it against disintegration due to the absorption of oil or grease.

If it is felt that sufficient accuracy in level between trunnion bearing piers cannot be maintained, we recommend that the grouting of the sole plate under the trunnion bearing opposite the gear end be delayed until after the mill is in place. In this way, the adjustment by shimming at this end can be made later to correct for any errors in elevation. Depending on local climatic conditions, two to seven days should he allowed for the grouting to dry and set, before painting or applying further loads to the piers.

Pinion bearings are provided of either the sleeve type or anti-friction type. Twin bearing construction may use either individual sole plates or a cast common sole plate. The unit with a common sole plate is completely assembled in our shop and is ready for installation. Normal inspection and cleaning procedure should be followed. Refer to the parts list for general assembly. These units are to be permanently grouted in position and, therefore, care should be taken to assure correct alignment.

The trunnion bearing assemblies can now be mounted on their sole plates. If the bearings are of the swivel type, a heavy industrial water-proof grease should be applied to the spherical surfaces of both the swivels and the bases. Move the trunnion bearings to their approximate position by adjustment of the set screws provided for this purpose.

In the case of ball mills, all internal wearing parts will pass through the manhole, whereas in the case of open end rod mills they will pass through the discharge trunnion opening. When lining the shell, start with the odd shaped pieces around the manhole opening if manholes are furnished. Rubber shell liner backing should be used with all cast type rod mills shell liners. If the shell liners are of the step type, they should be assembled with the thin portion, or toe, as the leading edge with respect to rotation of the mill.

Lorain liners for the shell are provided with special round head bolts, with a waterproof washer and nut. All other cast type liners for the head and shell are provided with oval head bolts with a cut washer and nuts. Except when water proof washers are used, it is advisable to wrap four or five turns of candle wicking around the shank of the bolt under the cut washer. Dip the candle wicking in white lead. All liner bolt threads should be dipped in graphite and oil before assembly. All liner bolt cuts should be firmly tightened by use of a pipe extension on a wrench, or better yet, by use of a torque wrench. The bolt heads should be driven firmly into the bolt holes with a hammer.

In order to minimise the effect of pulp race, we recommend that the spaces between the ends of the shell liners and the head liners or grates be filled with suitable packing. This packing may be in the form of rubber belting, hose, rope or wood.

If adequate overhead crane facilities are available, the heads can be assembled to the shell with the flange connecting bolts drawn tightly. Furthermore, the liners can be in place, as stated above, and the gear can be mounted, as covered by separate instructions. Then the mill can be taken to its location and set in place in the trunnion bearings.

If on the other hand the handling facilities are limited it is recommended that the bare shell and heads be assembled together in a slightly higher position than normal. After the flange bolts are tightened, the mill proper should be lowered into position. Other intermediate methods may be used, depending on local conditions.

In any event, just prior to the lowering of the mill into the bearings the trunnion journal and bushing and bases should be thoroughly cleaned and greased. Care should be taken not to foul the teeth in the gear or pinion. Trunnion bearing caps should be immediately installed, although not necessarily tightened, to prevent dirt settling on the trunnions. The gear should be at least tentatively covered for protection.

IMPORTANT. Unless the millwright or operator is familiar with this type of seal, there is a tendency to assume that the oil seal is too long because of its appearance when held firmly around the trunnion. It is not the function of the brass oil seal band to provide tension for effective sealing. This is accomplished by the garter spring which is provided with the oil seal.

Assemble the oil seal with the spring in place, and with the split at the top. Encircle the oil seal with the band, keeping the blocks on the side of the bearing at or near the horizontal center line so that when in place they will fit between the two dowel pins on the bearing, which are used to prevent rotation of the seal.

Moderately tighten up the cap screws at the blocks, pulling them together to thus hold the seal with its spring in place. If the blocks cannot be pulled snuggly together, then the oil seal may be cut accordingly. Oil the trunnion surface and slide the entire seal assembly back into place against the shoulder of the bearing and finish tightening. Install the retainer ring and splash ring as shown.

In most cases the trunnion liners are already mounted in the trunnions of the mills. If not, they should be assembled with attention being given to match marks or in some cases to dowel pins which are used to locate the trunnion liners in their proper relation to other parts.

If a scoop feeder, combination drum scoop feeder or drum feeder is supplied with the mill, it should be mounted on the extended flange of the feed trunnion liner, matching the dowel pin with its respective hole. The dowel pin arrangement is provided only where there is a spiral in the feed trunnion liner. This matching is important as it fixes the relationship between the discharge from the scoop and the internal spiral of the trunnion liner. Tighten the bolts attaching the feeder to the trunnion liner evenly, all around the circle, seating the feeder tightly and squarely on its bevelled seat. Check the bolts holding the lips and other bolts that may require tightening. The beveled seat design is used primarily where a feeder is provided for the trunnion to trunnion liner connection, and the trunnion liner to feeder connection. When a feeder is not used these connecting joints are usually provided by a simple cylindrical or male and female joint.

If a spout feeder is to be used, it is generally supplied by the user, and should be mounted independently of the mill. The spout should project inside the feed trunnion liner, but must not touch the liner or spiral.

Ordinarily the feed box for a scoop tender is designed and supplied by the user. The feed box should be so constructed that it has at least 6 clearance on both sides and at the bottom of the scoop. This clearance is measured from the outside of the feed scoop.

The feed box may be constructed of 2 wood, but more often is made of 3/16 or plate steel reinforced with angles. In the larger size mills, the lower portion is sometimes made of concrete. Necessary openings should be provided for the original feed and the sand returns from the classifiers when in closed circuit.

A plate steel gear guard is furnished with the mill for safety in operation and to protect the gear and pinion from dirt or grit. As soon as the gear and pinion have been cleaned and coated with the proper lubricant, the gear guard should be assembled and set on its foundation.

Most Rod Mills are provided with a discharge housing mechanism mounted independently of the mill. This unit consists of the housing proper, plug door, plug shaft, arm, and various hinge pins and pivot and lock pins. The door mechanism is extra heavy throughout and is subject to adjustment as regard location. Place the housing proper on the foundation, level with steel shims and tighten the foundation bolts. The various parts may now be assembled to the housing proper and the door plug can be swung into place, securing it with the necessary lock pins.

After the mill has been completely assembled and aligned, the door mechanism centered and adjusted, and all clearances checked, the housing base can be grouted. The unit should be so located both vertically and horizontally so as to provide a uniform annular opening between the discharge plug door and the head liners.

In some cases because of space limitation, economy reasons, etc., the mill is not equipped with separate discharge housing. In such a case, the open end low discharge principal is accomplished by means of the same size opening through the discharge trunnion but with the plug door attached to lugs on the head liner segments or lugs on the discharge trunnion liner proper. In still other cases, it is sometimes effected by means of an arm holding the plug and mounted on a cross member which is attached to the bell of the discharge trunnion liner. In such cases as those, a light weight sheet steel discharge housing is supplied by the user to accommodate the local plant layout in conjunction with the discharge launder.

TRUNNION BEARING LUBRICATION. For the larger mills with trunnion bearings provided with oil seals, we recommend flood oil lubrication. This can be accomplished by a centralized system for two or more mills, or by an individual system for each mill. We recommend the individual system for each mill, except where six or more mills are involved, or when economy reasons may dictate otherwise.

In any event oil flow to each trunnion bearing should be between 3 to 5 gallons per minute. The oil should be adequately filtered and heaters may be used to maintain a temperature which will provide proper filtration and maintain the necessary viscosity for adequate flow. The lines leading from the filter to the bearing should be of copper tubing or pickled piping. The drain line leading from the bearings to the storage or sump tank should be of adequate size for proper flow, and they should be set at a minimum slope of per foot, perferably per foot. Avoid unnecessary elbows and fittings wherever possible. Avoid bends which create traps and which might accumulate impurities. All lines should be thoroughly cleaned and flushed with a solvent, and then blown free with air, before oil is added.

It is advisable to interlock the oil pump motor with the mill motor in such a way that the mill cannot be started until after the oil pump is operating. We recommend the use of a non-adjuslable valve at each bearing to prevent tampering.

When using the drip oil system it is advisable to place wool yarn or waste inside a canvas porous bag to prevent small pieces of the wool being drawn down into the trunnion journal. If brick grease is used, care should be taken in its selection with regard to the range of its effective temperature. In other words, it should be pointed out that brick grease is generally designed for a specific temperature range. Where the bearing temperature does not come up to the minimum temperature rating of the brick grease, the oil will not flow from it, and on the other hand if the temperature of the bearing exceeds the maximum temperature rating of the brick grease, the brick is subject to glazing; therefore, blinding off of the oil. This brick should be trimmed so that it rests freely on the trunnion journal, and does not hang up, or bind on the sides of the grease box.

When replacing the brick grease, remove the old grease completely. Due to the extended running time of brick grease, there is usually an accumulation of impurities and foreign matter on the top surface, which is detrimental to the bearing.

Where anti-friction bearings are supplied, they are adequately sealed for either grease or oil lubrication. If a flood system is used for the trunnion bearings and it is adequately filtered, it can then be used for pinion bearings with the same precautions taken as mentioned above, with a flow of to 1 gallons per minute to each bearing.

These lubricants can be applied by hand, but we highly recommend some type of spray system, whether it be automatic, semi-automatic or manually operated. It has been found that it is best to lubricate gears frequently with small quantities.

Start the lubrication system and run it for about ten minutes, adjusting the oil flow at each bearing. Check all of the bolts and nuts on the mill for tightness and remove all ladders, tools and other obstructions prior to starting the mill.

Before starting the mill, even though it is empty, we recommend that it be jogged one or two revolutions for a check as to clearance of the gear and its guard, splash rings, etc. The trunnion journal should also be checked for uniform oil film and for any evidence of foreign material which might manifest itself through the appearance of scratches on the journal. If there are any scratches, it is very possible that some foreign material such as weld splatter may have been drawn down into the bushing, and can be found imbedded there. These particles should be removed before proceeding further.

If everything is found to be satisfactory, then the mill should be run for ten to fifteen minutes, and stopped. The trunnion bearings should be checked for any undue temperature and the gear grease pattern can be observed for uniformity which would indicate correct alignment.

It should be noted that with an empty mill the reactions and operating characteristics of the bearings and gearing at this point are somewhat different than when operating with a ball or rod charge. Gear noises will be prominent and some vibration will occur due to no load and normal back-lash. Furthermore, it will be found that the mill will continue to rotate for some time after the power is shut off. Safety precautions should therefore he observed, and no work should be done on the mill until it has come to a complete stop.

We have now reached the point where a half ball or rod charge can be added, and the mill run for another six to eight hours, feeding approximately half the anticipated tonnage. The mill should now be stopped, end the gear grease pattern checked, and gear and pinion mesh corrected, if necessary, according to separate instructions.

The full charge of balls or rods can now be added, as well as the full amount of feed, and after a run of about four to six days, ALL BOLTS SHOULD AGAIN BE RETIGHTENED, and the gear and pinion checked again, and adjusted if necessary.

Where starting jacks are provided for the trunnion bearings of the larger sized mills, they should be filled with the same oil that is used for the lubrication of the trunnion bearings. Before starting the mill they should be pumped so as to insure having an oil film between the journal and the bushing.

When relining any part of the mill, clean away all sand from the parts to be relined before putting in the new liners. For the head liners and shell liners you may then proceed in the same manner used at the time of the initial assembly.

Before relining the grate type discharge head, it is advisable to refer to the assembly drawings and the parts list.Because of such limitations as the size of the manhole opening, and for various other reasons, it will be found that the center discharge liner and cone designs vary. The cone may be a separate piece or integral with either the trunnion liner, or the router discharge liner. Furthermore, it will be found in some mills that the center discharge liner is held by bolts through the discharge head, whereas in other cases it depends upon the clamping effect of grates to hold it in position. In any event, the primary thing to remember in assembling the discharge grate head parts is the fact that the grate should be first drawn up tightly towards the center discharge liner by adjusting the grate set screws located at the periphery of the discharge head. This adjustment should be carried out in progressive steps, alternating at about 180 if possible and in such a manner that, the center discharge liner does not become dislodged from its proper position at the center of the mill. These grate set screws should be adjusted with the side clamp bar bolts loosened. After the grates have been completely tightened with the set screws, check for correct and uniform position of each grate section. The side clamp bar bolts may now be lightened, again using an alternate process. This should result in the side clamp bars firmly bearing against the beveled sides of the grates. The side clamp bars should not hear against the lifter liners.

When new pan liners are installed, they should be grouted in position so as to prevent pulp race in the void space between the discharge head and the pan liner. Another good method of preventing this pulp race is the use of the sponge rubber which can be cemented in place.

After the mill is erected, in order to avoid overlooking both obvious and obscure installation details, we recommend the use of a check list. This is particularly recommended for multiple mill installations where it is difficult to control the different phases of installation for each and every mill. Such a check list can be modeled after the following:

No. 1 Connecting Bolts drawn tight. A. Head and Shell flange bolts. B. Gear Connecting, bolts. No. 2 Trunnion studs or bolts drawn up tight. No. 3 Trunnion liner and feeder connecting bolts or studs drawn up tight. No. 4 Feeder lip bolts tightened. No. 5 Liner bolts drawn up tight. No. 6 Gear. A. Concentric B. Backlash C. Runout D. Joint bolts drawn up tight. No. 7 Coupling and Drive alignment and lubrication. No. 8 Bearings and Gearing cleaned and lubricated. No. 9 Lubrication system in working order with automatic devices including alarms and interlocking systems.

We further recommend that during the first thirty to sixty days of operation, particular attention be given to bolt tightness, foundation settlement and condition of the grouting. We suggest any unusual occurrence be recorded so that should trouble develop later there may be a clue which would simplify diagnosing and rectifying the situation.

As a safety precaution, and in many cases in order to comply with local safety regulations, guards should be used to protect the operators and mechanics from contact with moving parts. However, these guards should not be of such a design that will prevent or hinder the close inspection of the vital parts. Frequent inspection should be made at regular intervals with particular attention being given to the condition of the wearing parts in the mill. In this way, you will be better able to anticipate your needs for liners and other parts in time to comply with the current delivery schedules.

When ordering repair or replacement parts for your mill, be sure to identify the parts with the number and description as shown on the repair parts list, and specify the hand and serial number of the mill.

By following the instructions outlined in this manual, mechanical malfunctions will be eliminated. However, inadvertent errors may occur even under, the most careful supervision. With this in mind, it is possible that some difficulties may arise. Whenever any abnormal mechanical reactions are found, invariably they can be attributed to causes which though sometimes obvious are often hidden. We sight herewith the most common problems, with their solutions.

Cause A GROUT DISINTEGRATION. Very often when the grouting is not up to specification the vibration from the mill tends to disintegrate the grouting. In most instances the disintegration starts between the sole plate and the top surface of the grouting near or at the vertical centerline of the mill. As this continues, the weight of the mill causes the sole plate and trunnion bearing base to bend with a resultant pinching action at the side of the bearing near the horizontal center line of the mill. This pinching will cut off and wipe the oil film from the journal and will manifest itself in the same manner as if the lubrication supply had been cut off. If the grout disintegration is limited to about . 050 and does not appear to be progressing further, the situation can be corrected by applying a corresponding amount of shimming between the trunnion bearing base and the sole plate near the centerline of the mill in such a fashion that the trunnion bearing base has been returned to its normal dimensional position. If, on the other hand, the grouting is in excess of . 050 and appears to be progressing further, it is advisable to shut down operations until the sole plate has been re grouted.

Cause B HIGH SPOT ON THE BUSHING. While all BallMill bushings are scraped in the shop to fit either a jig mandrel or the head proper to which it is to be fitted, nevertheless there is a certain amount of seasoning and dimensional change which goes on in the type of metals used. Therefore if high spots are found, the mill should be raised, the bushings removed and rescraped. Bluing may be used to assist in detecting high spots.

Cause C INSUFFICIENT OIL FLOW. Increase the oil supply if it is a flood oil system. If brick grease is used, it is possible that the particular grade of brick may not be applicable to the actual bearing temperature. Refer to the remarks in this manual under the paragraph entitled Lubrication.

Cause E EXCESSIVE RUBBING ON THE SIDE OF THE BUSHING. This comes about due to the improper setting of the bearings in the longitudinal plane. In some cases, particularly on dry grinding or hot clinker grinding mills, the expansion of the mills proper may account for this condition. In any event, it can be remedied by re-adjusting the bearing base on the sole plate longitudinally at the end opposite the drive.

There are many more lubricant suppliers, such as E. F. Houghton and Co. , or Lubriplate Division of Fiske Bros. Refining Co. In making your final selection of lubricants, you should consider the actual plant conditions as well as the standardization of lubricants. New and improved lubricants are being marketed, and we, therefore, suggest that you consult your local suppliers.

operations and maintenance training for ball mills

operations and maintenance training for ball mills

Learn how to optimise your ball mill systems in this 5-day training seminar focused on best practices for operations and maintenance (preventive and reactive) to achieve energy savings, reduced maintenance costs and overall improved productivity of the ball mill systems. Ball mills are used for many applications in cement production: raw meal grinding, coal and petcoke grinding as well as finish cement grinding. Each of these systems have their similarities and differences. This ball mill seminar is designed to train your personnel on the overall technology, operation and maintenance of your ball mill cement grinding system. The seminar focuses on the latest best practices for the operation and maintenance of ball mill systems to allow for optimal cement production, energy savings, reduced maintenance costs as well as the continuous improvement of the overall equipment operation. The course offers classroom instruction from our FLSmidth ball mill specialists and case studies based on real situations at different ball mill installations. Working sessions are scheduled to allow for a thorough study of the design and function of the main equipment, including but not limited to the latest methods for optimisation and possibilities for upgrades and modernisation of the current systems and operations. Maintenance training is focused on routine preventive maintenance to minimize downtime in ball mill systems, as well as developing preventive maintenance programmes and troubleshooting techniques to quickly identify and fix problems. Beyond what you will learn about your ball mill systems, this seminar provides excellent networking opportunities with our specialists as well as your counterparts from the cement industry.

Learn how to optimise your ball mill systems in this 5-day training seminar focused on best practices for operations and maintenance (preventive and reactive) to achieve energy savings, reduced maintenance costs and overall improved productivity of the ball mill systems.

Ball mills are used for many applications in cement production: raw meal grinding, coal and petcoke grinding as well as finish cement grinding. Each of these systems have their similarities and differences. This ball mill seminar is designed to train your personnel on the overall technology, operation and maintenance of your ball mill cement grinding system.

The seminar focuses on the latest best practices for the operation and maintenance of ball mill systems to allow for optimal cement production, energy savings, reduced maintenance costs as well as the continuous improvement of the overall equipment operation.

The course offers classroom instruction from our FLSmidth ball mill specialists and case studies based on real situations at different ball mill installations. Working sessions are scheduled to allow for a thorough study of the design and function of the main equipment, including but not limited to the latest methods for optimisation and possibilities for upgrades and modernisation of the current systems and operations.

Maintenance training is focused on routine preventive maintenance to minimize downtime in ball mill systems, as well as developing preventive maintenance programmes and troubleshooting techniques to quickly identify and fix problems.

FLSmidth provides sustainable productivity to the global mining and cement industries. We deliver market-leading engineering, equipment and service solutions that enable our customers to improve performance, drive down costs and reduce environmental impact. Our operations span the globe and we are close to 10,200 employees, present in more than 60 countries. In 2020, FLSmidth generated revenue of DKK 16.4 billion. MissionZero is our sustainability ambition towards zero emissions in mining and cement by 2030.

ball mill, ball grinding mill - all industrial manufacturers - videos

ball mill, ball grinding mill - all industrial manufacturers - videos

{{#each product.specData:i}} {{name}}: {{value}} {{#i!=(product.specData.length-1)}} {{/end}} {{/each}}

{{#each product.specData:i}} {{name}}: {{value}} {{#i!=(product.specData.length-1)}} {{/end}} {{/each}}

... LN2 feeding systems, jar and ball sizes, adapter racks, materials low LN2-consumption clearly structured user interface, memory for 9 SOPs programmable cooling and grinding cycles (10 ...

The XRD-Mill McCrone was specially developed for the preparation of samples for subsequent X-ray diffraction (XRD). The mill is used for applications in geology, chemistry, mineralogy and materials science, ...

The Planetary Ball Mill PM 200, engineered by Retsch, is a milling device best suited for mixing and size reduction processes and is also capable of meeting the necessary requirements for colloidal grinding ...

... Micro Mill PULVERISETTE 0 is the ideal laboratory mill for fine comminution of medium-hard, brittle, moist or temperature-sensitive samples dry or in suspension as well as for homogenising of emulsions ...

... , fast, effective. WORKING PRINCIPLE Impact and friction The FRITSCH Mini-Mill PULVERISETTE 23 grinds the sample through impact and friction between grinding balls and the inside wall of the grinding ...

... grinding mills includes being safe throughout. When the mills are quoted we make sure to include any and all safety components needed. Long life and minimum maintenance To help you get the most of your ...

Annular gap and agitator bead mills are used for processing suspensions and highly viscous products in chemicals and cosmetics as well as in the food sector. Studies have shown that annular gap bead ...

... Pneumatic extraction from the surface of the agitated media bed Wet grinding: Separation of suspension from the agitated media by ball retaining device Flexibility Through careful selection of the size and quantity ...

... details; Agitating power: 0,37 kW Total Power Consumption : 1.44 kW Total Weight : 100 kg Metal Ball Size : 6.35 mm Metal Ball Amount : 7 kg Cold water consumption : 10 liters / hour ...

Cement Ball Mill Processing ability: - 200 t/h Max feeding size: - 25 mm Product Fineness: - 0.074-0.89mm Range of application: - limestone, calcium carbonate, clay, dolomite and other minerals ...

... grinds and classifies a product. Vilitek MBL-NK-80 mill is specially designed for grinding valuable materials, which, when grinding, the re-milled fractions are not a commodity product. In particular, this mill ...

Dimensions: Height: 1530 mm Width: 650 mm Length : 1025 mm Description: Ball mills are capable of rapidly producing chocolate, nut pastes (for gianduia), and spreadable creams. It has been ...

ball mill maintenance - prime machine, inc

ball mill maintenance - prime machine, inc

The shop is fully equippedwith the large machining, fabrication, and engineering capabilities to rebuild your mill components. Our mechanics are experienced at removing and installing large bearings. Our babbitt facility is capable of rebuilding the largest of your bearings. We are capable of completely manufacturing new shells in our fabrication facility and machining them with our large machining centers. Bearing housings, bearings, and trunion liners can all be engineered, fabricated and machined at our facilities.

In the field we are capable of doing mill alignments using state of the art three dimensional lasers to provide accurate measurements of the center line mill rotation and pinion rotations. The lasers are capable of aligning the synchronous motors and pinions over the large clutches to get accurate shaft to shaft alignments. Girth gear change outs with our experienced millwrights or just reversing gear. We are able to machine journals in place or remove them and bring to shop and machine them here.

Weld fabrication of tire Mill 6 Newmont worlds largest dry grinding mill world class workmanship 6 full penetration welds verified with ultra sonic testing. Machined after fabrication to 32 RMS finish.

* All trademarks and registered names remain property of their respective owners. Unless otherwise specified, no association between Prime Mahine, Inc. and any trademark holder is expressed or implied.

grinding technology and mill operations | flsmidth

grinding technology and mill operations | flsmidth

This course provides an in-depth understanding of grinding theory and equipment and gives operators the tools to audit your equipment and systems. Improving knowledge of grinding technology and mill operations to operate, optimise and troubleshoot ball mill and vertical roller mill grinding installations. Ball mills and vertical roller mills are used for many grinding applications in cement production: raw meal grinding, coal and pet coke, and finish cement grinding. Improving the competences of the team plays a key role in the optimal utilisation of the grinding installation in your cement plant. The operators and process engineers must be able to evaluate all the process variables in order to optimise the mill system production. The grinding technology and mill operations course provides the necessary knowledge to maximise the production rate and promote operational stability while ensuring the grinding systems operate efficiently.

This course provides an in-depth understanding of grinding theory and equipment and gives operators the tools to audit your equipment and systems. Improving knowledge of grinding technology and mill operations to operate, optimise and troubleshoot ball mill and vertical roller mill grinding installations.

Ball mills and vertical roller mills are used for many grinding applications in cement production: raw meal grinding, coal and pet coke, and finish cement grinding. Improving the competences of the team plays a key role in the optimal utilisation of the grinding installation in your cement plant.

The operators and process engineers must be able to evaluate all the process variables in order to optimise the mill system production. The grinding technology and mill operations course provides the necessary knowledge to maximise the production rate and promote operational stability while ensuring the grinding systems operate efficiently.

FLSmidth provides sustainable productivity to the global mining and cement industries. We deliver market-leading engineering, equipment and service solutions that enable our customers to improve performance, drive down costs and reduce environmental impact. Our operations span the globe and we are close to 10,200 employees, present in more than 60 countries. In 2020, FLSmidth generated revenue of DKK 16.4 billion. MissionZero is our sustainability ambition towards zero emissions in mining and cement by 2030.

ball mill used in minerals processing plant | prominer (shanghai) mining technology co.,ltd

ball mill used in minerals processing plant | prominer (shanghai) mining technology co.,ltd

This ball mill is typically designed to grind mineral ores and other materials with different hardness, and it is widely used in different fields, such as ore dressing, building material field, chemical industry, etc. Due to the difference of its slurry discharging method, it is divided to two types: grid type ball mill and overflow type ball mill.

Compared with grid type ball mill, overflow type ball mill can grind materials finer even though its grinding time is usually longer. So it can make finer particle products. Hence the grid type ball mill is mainly used for primary stage of grinding while overflow type ball mill is mainly used for the secondary grinding.

Ball mill Advantages: 1Jack-up device, easy maintenance; 2The hydrostatic and hydrodynamic bearings ensure the smooth operation; 3Low speed transmission is easy for starting and maintenance; 4The oil-mist lubrication device guarantees reliable performance of bearings; 5The air clutch adopts the flexible start-up model./5According to the customer demand, manganese steel liner and wear-resistant rubber liner can be customized with good wear resistance, long service life and easy maintenance.

The grinding system uses either 'open circuit' or 'closed circuit'. In an open circuit system, the feed rate of materials is adjusted to achieve the desired fineness of the product. In a closed circuit system, coarse particles are separated from the finer ones and sent back for further grinding.

Prominer has been devoted to mineral processing industry for decades and specializes in mineral upgrading and deep processing. With expertise in the fields of mineral project development, mining, test study, engineering, technological processing.

reliable pulverising all day, every day

reliable pulverising all day, every day

We recognise that you need pulverising mills which are powerful, robust and versatile. They also need to produce accurate samples incorrect sampling can cost you large sums of money. Thats why we offer the industry-leading Essa Pulverising Mills, which have been built to offer the best value and top performance. They handle a range of sample sizes, grind samples in minutes, and are ideal for ores, drill samples and industrial minerals.

Discovering lower grade deposits, catering to improved analytical techniques and increased focus on statistically correct sampling are not just present-day challenges faced by geochemists. They were very real issues in the 1980s.

How did the sample preparation equipment manufacturers respond to these emerging challenges? To go big. To reduce a larger sample to a finer particle size. So, we invented a unique large-capacity flying saucer disc and bowl that revolutionised fine pulverising. And we had to engineer powerful mills to drive these big bowls.

If you desire flexibility across a wide range of applications, the LM2 is the answer. It can be fitted with a unique 800, 1000 or 2000 cc single-disc type grinding bowl, as well as any standard size ring-and-roller grinding bowl. Optional bowl materials include chrome steel, standard (low chrome) steel and tungsten carbide.

Samples are typically ground to 95% minus 75 micron in approximately three minutes, with the user-friendly pneumatic bowl clamping adding to the efficiency. This also reduces manual handling, as well as the option of having the MILLMATE pneumatic lifting device. The insulated cabinet incorporates effective noise suppression measures and is easy to clean.

The trustworthy LM2 is suited to high-volume mineral laboratories. You can also confidently use it in any laboratory remote from the specialised repair services required for integral vibratory motor-driven mills.

The mill offers great benefit to high-volume mineral laboratories that regularly prepare large samples in the unique Essa single-puck style of bowl. It is often used in series with two or three machines and one operator when larger or harder samples require longer grind times to achieve a finer product.

This LM5 is the go-to machine for pulverising larger sample size ores, minerals, metallurgical samples, ceramics, soils, aggregates, chemicals and similar particulate. A powerful 4 kW electric motor drives the LM5, with it able to take sample volumes up to 5000 cc. Optimal performance is achieved with sample weights of between 2.5 kg and 3.5 kg. It can pulverise most rock types to 90%, passing 75 microns in only six minutes.

Different minerals behave differently during pulverisation brittle minerals will break down whereas some, such as native gold, will just change shape if poorly prepared. The LM5 is a top performer for the gold mining industry, especially where nuggety samples are more common.

Unique safety and operational features make the LM5 safe and easy for your workers. A lid safety switch and emergency stop button mean improved safety, and a vacuum gun helps with efficient and safe removal of pulp residue, reducing contamination. The MILLMATE air lift crane is supplied as standard for safe operation.

The user-friendly LM201 can be fitted with 800, 1000 or 2000 cc single disc-type grinding bowls, and the standard size ring-and-roller grinding bowls. It typically grinds to 95% minus 75 micron in approximately three minutes.

This is the workhorse you need, with the strength and power of a 2.2 kW driven shaft to rapidly grind up to 1.8 kg of ore mineral for analysis. The powder-coated steel frame and panels strengthen the frame and prevent corrosion. The insulated steel cabinet suppresses noise, and the operation of the MILLMATE (supplied as standard) from either side of the machine means less manual handling and continuous heavy lifting for your operators.

Designed to meet CE compliance, the mill has a steel casing and a number of features for improved maintenance access, costing you less downtime. The motor has been moved to the left-hand side away from the electrical box, and pneumatic and electric controls are separated for extra safety. Maintenance time and costs are also reduced thanks to sealed bearings which remove the requirement for greasing.

The ABMs permanently attached, self-discharging bowl is air blasted and vacuum cleaned between batches, with the residue discharged into the resident dust collection system. Bowl discharge and cleaning is controlled by an on-board programmable logic controller (PLC) which also controls the milling cycle.

As well as the automated cleaning function enabling you to minimise operator involvement, the operation process requires them to simply tip the feed sample into a feed hopper, press a start button and remove a container that receives the milled sample.

There are three l configurations available depending on your specific sample types. Parameters such as grind and discharge time, air cleaning cycles and optional sand auto rinse frequency are all programmable and password protected. The Autobatch Mill has an inbuilt monitoring and diagnostic system.

The special purpose radial slewing MILLMATE hoist is mounted on a vertical mast that fits conveniently between the mill and workbench. The cradle is manually manoeuvred by the operator to pick up and set down the bowl, meaning less fatigue for your operator. Two thumb-operated push buttons in-built into the cradle control the hoisting motion. The hoist supports the whole bowl assembly in a weightless condition during the transfer and requires very little operator effort.

FLSmidth provides sustainable productivity to the global mining and cement industries. We deliver market-leading engineering, equipment and service solutions that enable our customers to improve performance, drive down costs and reduce environmental impact. Our operations span the globe and we are close to 10,200 employees, present in more than 60 countries. In 2020, FLSmidth generated revenue of DKK 16.4 billion. MissionZero is our sustainability ambition towards zero emissions in mining and cement by 2030.

energy saving ball mill|cone ball mill|tube ball mill|cement mill|dry magnetic separator

energy saving ball mill|cone ball mill|tube ball mill|cement mill|dry magnetic separator

Supply of New Mining Equipment Sales Contracts - available on the complete range of Hongrun Machinery Supply technique, building design, instruction, installation and troubleshooting service Bespoke design to suit specific needs Complete Aftersales support -7*24 online service.

ball mills | industry grinder for mineral processing - jxsc machine

ball mills | industry grinder for mineral processing - jxsc machine

Max Feeding size <25mm Discharge size0.075-0.4mm Typesoverflow ball mills, grate discharge ball mills Service 24hrs quotation, custom made parts, processing flow design & optimization, one year warranty, on-site installation.

Ball mill, also known as ball grinding machine, a well-known ore grinding machine, widely used in the mining, construction, aggregate application. JXSC start the ball mill business since 1985, supply globally service includes design, manufacturing, installation, and free operation training. Type according to the discharge type, overflow ball mill, grate discharge ball mill; according to the grinding conditions, wet milling, dry grinding; according to the ball mill media. Wet grinding gold, chrome, tin, coltan, tantalite, silica sand, lead, pebble, and the like mining application. Dry grinding cement, building stone, power, etc. Grinding media ball steel ball, manganese, chrome, ceramic ball, etc. Common steel ball sizes 40mm, 60mm, 80mm, 100mm, 120mm. Ball mill liner Natural rubber plate, manganese steel plate, 50-130mm custom thickness. Features 1. Effective grinding technology for diverse applications 2. Long life and minimum maintenance 3. Automatization 4. Working Continuously 5. Quality guarantee, safe operation, energy-saving. The ball grinding mill machine usually coordinates with other rock crusher machines, like jaw crusher, cone crusher, to reduce the ore particle into fine and superfine size. Ball mills grinding tasks can be done under dry or wet conditions. Get to know more details of rock crushers, ore grinders, contact us!

Ball mill parts feed, discharge, barrel, gear, motor, reducer, bearing, bearing seat, frame, liner plate, steel ball, etc. Contact our overseas office for buying ball mill components, wear parts, and your mine site visits. Ball mill working principle High energy ball milling is a type of powder grinding mill used to grind ores and other materials to 25 mesh or extremely fine powders, mainly used in the mineral processing industry, both in open or closed circuits. Ball milling is a grinding method that reduces the product into a controlled final grind and a uniform size, usually, the manganese, iron, steel balls or ceramic are used in the collision container. The ball milling process prepared by rod mill, sag mill (autogenous / semi autogenous grinding mill), jaw crusher, cone crusher, and other single or multistage crushing and screening. Ball mill manufacturer With more than 35 years of experience in grinding balls mill technology, JXSC design and produce heavy-duty scientific ball mill with long life minimum maintenance among industrial use, laboratory use. Besides, portable ball mills are designed for the mobile mineral processing plant. How much the ball mill, and how much invest a crushing plant? contact us today! Find more ball mill diagram at ball mill PDF ServiceBall mill design, Testing of the material, grinding circuit design, on site installation. The ball grinding mill machine usually coordinates with other rock crusher machines, like jaw crusher, cone crusher, get to know more details of rock crushers, ore grinders, contact us! sag mill vs ball mill, rod mill vs ball mill

How many types of ball mill 1. Based on the axial orientation a. Horizontal ball mill. It is the most common type supplied from ball mill manufacturers in China. Although the capacity, specification, and structure may vary from every supplier, they are basically shaped like a cylinder with a drum inside its chamber. As the name implies, it comes in a longer and thinner shape form that vertical ball mills. Most horizontal ball mills have timers that shut down automatically when the material is fully processed. b. Vertical ball mills are not very commonly used in industries owing to its capacity limitation and specific structure. Vertical roller mill comes in the form of an erect cylinder rather than a horizontal type like a detachable drum, that is the vertical grinding mill only produced base on custom requirements by vertical ball mill manufacturers. 2. Base on the loading capacity Ball mill manufacturers in China design different ball mill sizes to meet the customers from various sectors of the public administration, such as colleges and universities, metallurgical institutes, and mines. a. Industrial ball mills. They are applied in the manufacturing factories, where they need them to grind a huge amount of material into specific particles, and alway interlink with other equipment like feeder, vibrating screen. Such as ball mill for mining, ceramic industry, cement grinding. b. Planetary Ball Mills, small ball mill. They are intended for usage in the testing laboratory, usually come in the form of vertical structure, has a small chamber and small loading capacity. Ball mill for sale In all the ore mining beneficiation and concentrating processes, including gravity separation, chemical, froth flotation, the working principle is to prepare fine size ores by crushing and grinding often with rock crushers, rod mill, and ball mils for the subsequent treatment. Over a period of many years development, the fine grinding fineness have been reduced many times, and the ball mill machine has become the widest used grinding machine in various applications due to solid structure, and low operation cost. The ball miller machine is a tumbling mill that uses steel milling balls as the grinding media, applied in either primary grinding or secondary grinding applications. The feed can be dry or wet, as for dry materials process, the shell dustproof to minimize the dust pollution. Gear drive mill barrel tumbles iron or steel balls with the ore at a speed. Usually, the balls filling rate about 40%, the mill balls size are initially 3080 cm diameter but gradually wore away as the ore was ground. In general, ball mill grinder can be fed either wet or dry, the ball mill machine is classed by electric power rather than diameter and capacity. JXSC ball mill manufacturer has industrial ball mill and small ball mill for sale, power range 18.5-800KW. During the production process, the ball grinding machine may be called cement mill, limestone ball mill, sand mill, coal mill, pebble mill, rotary ball mill, wet grinding mill, etc. JXSC ball mills are designed for high capacity long service, good quality match Metso ball mill. Grinding media Grinding balls for mining usually adopt wet grinding ball mills, mostly manganese, steel, lead balls. Ceramic balls for ball mill often seen in the laboratory. Types of ball mill: wet grinding ball mill, dry grinding ball mill, horizontal ball mill, vibration mill, large ball mill, coal mill, stone mill grinder, tumbling ball mill, etc. The ball mill barrel is filled with powder and milling media, the powder can reduce the balls falling impact, but if the power too much that may cause balls to stick to the container side. Along with the rotational force, the crushing action mill the power, so, it is essential to ensure that there is enough space for media to tumble effectively. How does ball mill work The material fed into the drum through the hopper, motor drive cylinder rotates, causing grinding balls rises and falls follow the drum rotation direction, the grinding media be lifted to a certain height and then fall back into the cylinder and onto the material to be ground. The rotation speed is a key point related to the ball mill efficiency, rotation speed too great or too small, neither bring good grinding result. Based on experience, the rotat

ion is usually set between 4-20/minute, if the speed too great, may create centrifuge force thus the grinding balls stay with the mill perimeter and dont fall. In summary, it depends on the mill diameter, the larger the diameter, the slower the rotation (the suitable rotation speed adjusted before delivery). What is critical speed of ball mill? The critical speed of the ball mill is the speed at which the centrifugal force is equal to the gravity on the inner surface of the mill so that no ball falls from its position onto the mill shell. Ball mill machines usually operates at 65-75% of critical speed. What is the ball mill price? There are many factors affects the ball mill cost, for quicker quotations, kindly let me know the following basic information. (1) Application, what is the grinding material? (2) required capacity, feeding and discharge size (3) dry or wet grinding (4) single machine or complete processing plant, etc.

multotec europe

multotec europe

Andrej Schulakow-Klass (Managing Director Multotec Europe) Tel: +49 6209 2 72 26 25 Mobile: +49 (0) 174 82 39 567 Email: [email protected] Address: Josef-Loroch Stasse 1. 69509. Mrlenbach. Germany

Together with our sister companies Steinhaus, Seibtechnik Tema and EuroSitex, we service and provide process support with our stockholding and equipment to assist in achieving maximum uptime for clients. The following illustration shows our sales network:

field service maintenance

field service maintenance

With over 45 years of application experience, maintenance management, and a mobile workforce of field technicians based around the world, our skilled field services teams have a full understanding of global mineral processing challenges. They conduct regular field service and maintenance site visits, preventative maintenance and lifecycle management to ensure your mineral processing operation is functioning to its full potential, regardless of where you are.

Understanding that proper maintenance can extend the lifespan of your mineral processing equipment, Multotecs range of condition monitoring products ensures your plant continuously operates at optimum efficiency.

With representation across the world, Multotec is able to conduct site visits to all our customers in order to advise on proper maintenance protocols. In these site visits, Multotec reaffirms our partnership with you based on achieving overall plant optimisation and not just a product supply.

At Multotec, we provide more than mineral processing equipment, but constantly strive to assist you in achieving your overall business goals. This is why when you partner with Multotec, you dont just get a diversified product offering, but form a relationship based on product refinement, a true understanding of process flow sheets, preventive maintenance, field service and technical support.

In line with best practices, Multotecs industrial services ensure your plants long-term operation as well as lower maintenance costs. Our consulting services, field technicians and team of field service engineers, as well as ongoing technical support, deliver reliable customer service wherever your operation is.

Our skilled engineers willconduct onsite application-specific plant and process audits to assess your site-specific needs. We offer screening audits, cyclone audits, spiral audits, mill audits and wear audits. Our experts will advise you on which of our diverse range of products would best optimise your plant production and lower your cost per ton.

Once your needs have been assessed and evaluated, our experts will draft technical drawings using state-of-the-art technology measuring all critical parameters to develop a completely unique solution for you. All this is part of our extensive design and research capabilities. We well refine or customise our products to suit your unique requirements in our dedicated CAD drawing and tooling room, taking into account your geographic location and supplicated-related conditions.

Multotec will deliver your optimised solution to your site, wherever it is located in the world, and well schedule services and engineering support. We will install or retrofit your solution onsite, taking into account your process flow sheet and cognisant of downtimes and schedules.

Once products and solutions have been installed, well conduct testing to ensure optimal operation and seamless integration between your existing systems and our products. We will install our patented condition monitoring software that will monitor your entire process, from operational flow to product performance. No matter where your plant is, Multotec will partner with you for on-going field service and maintenance with our strategically placed, mobile service crew.

horizontal ball mill | yokogawa europe

horizontal ball mill | yokogawa europe

A horizontal rotary miller used to grind the limestone rocks with metallic balls as grinding stones. This is used as the raw ingredient to produce cement powder. The temperature needs to be monitored in order to control the process and the quality of the final product.

Install two YTA510 wireless temperature transmitters at the mill wall. They then communicate directly with the wireless gateway. Modbus signals from the gateway are sent to the "MW100" that converts the measured values into 4 to 20mA signals that the existing control system can accept without any modification.

After installing wireless transmitters there was a 40% improvement in the efficiency of the mill operation. There were no records of communication error. The ISA100 wireless solution reduced total maintenance cost by 68% and increased the measurement reliability by a further 85%.

In mining and cement factories there are a lot of rotating equipment. The customer approved the wireless solution and a conceptual design that uses our wireless solution within this type of application was standardized. The initial cost of deployment was quickly paid back by the increased operational time and reduced maintenance cost and effort.

Mining operations produces valuable minerals or geological materials from the Earth. Economical recovery often requires high throughput and high availability of the process with low operation costs, and stringent safety and environmental regulations.

YFGW710 Field Wireless Integrated Gateway comply to the wireless communications standard ISA100.11a for industrial automation of International Society of Automation (ISA), and relays ISA100 Device data to the system via integrated backbone router. Single unit of YFGW710 has integrated functions of backbone router, system manager, security manage, and gateway.

The high performance temperature transmitter YTA510 accepts Thermocouple, RTD, ohms or DC mill volt inputs. The transmitters transmit not only process variables but also the setting parameters using wireless signal. The transmitters run on internal batteries, and the installation cost can be decreased since hard-wiring is not required. The communication is based on ISA100.11a protocol specifications.

professional ball mill supplier sell types of ball mill and vertical mill

professional ball mill supplier sell types of ball mill and vertical mill

Anyang General International Co., Ltd. (AGICO Group) is an enterprise specializing in manufacturing industrial milling equipment. Because the production capacity and process level of AGICO industrial milling equipment have reached the international leading level, our ball mill machine and vertical roller mill equipment are widely sold in Russia, Vietnam, Malaysia, USA, South Africa, Brazil, Eastern Europe, Oceania and other countries and regions.

We provide raw material testing services to our customers. We will inspect the composition and hardness of raw materials that customers need to grind. According to the fineness of finished products required by customers, analyze the particle size of finished products after raw material grinding, pass sieve rate and other values. Form a raw material test report to grasp the real needs of customers. Provide data support for customers to select suitable ball mill or vertical roller mill equipment.

We will select the right grinding equipment for our customers based on their raw material characteristics, grinding requirements, capacity requirements, site characteristics, investment costs and other factors. If you need the construction of the grinding production line, we will also customize the solution for you, and give the most professional technical support.

We provide various types of material grinding service for customers. We have ball mills, vertical roller mills, rod mills and AG/SAG mills for material trial grinding. According to the customers requirements for fineness of the finished product, different types of mills are used for test grinding. Through the material grinding test, the real grinding data report of specific materials can be formed for customers, so that customers can have a more comprehensive understanding of mining and cement milling equipment and the purchase is more assured. We support test grinding of limestone, activated carbon, gypsum, graphite, slaked lime, calcium carbonate, slag and many other materials.

We are responsible for giving mining and cement milling equipment installation and commissioning instructions. For customers who needed, we will also send technicians to the factory to guide the installation to ensure the normal operation of the equipment. Our professional engineers also train the customer team to ensure that the operator operates the equipment correctly.

We have a professional after-sales service team to answer all the after-sales problems of grinding mill equipment for you. Customers can contact us at any time for after-sales needs such as equipment maintenance, parts replacement, equipment demolition, machine debugging, etc., and our after-sales team will give a reply at the first time.

As a ball mills supplier with 22 years of experience in the grinding industry, we can provide customers with types of ball mill, vertical mill, rod mill and AG/SAG mill for grinding in a variety of industries and materials.

Get in Touch with Mechanic
Related Products
Recent Posts
  1. manufacturer mica ball mill

  2. ball mills capacity

  3. track concrete rod mill for sale

  4. coal level measurement in tube ball mill

  5. ball mill sound level sensor

  6. herozintal ball mill calculation

  7. feldspar lumps bauxite ball mill

  8. ball mills south africa

  9. quartz mining wet ball mill quartz mining growing

  10. sops for ball mill equepments

  11. maestro 300tph stone crushing plant price in india

  12. kano tangible benefits small pyrrhotite stone crushing machine sell

  13. fiji high quality portable rock linear vibrating screen

  14. small kaolin mineral processing production line in rabat

  15. cement grinding unit cement grinding process

  16. low price new carbon black wear parts of ball mill manufacturer in south asia

  17. new design gold washing vibrating screen

  18. incheon high quality medium quartz linear vibrating screen sell at a loss

  19. spiral chute separator addon

  20. charcoal machine price